Frequently Asked Questions
    Fräswerkzeuge mit Wendeschneidplatten allgemein
  • Was versteht man unter einem Schneidenwinkel bzw. einem Anstellwinkel?
    Es gibt verschiedene internationale and nationale Standards zur präzisen Definition der Geometrie von Zerspanungswerkzeugen. Der “Schneidenwinkel ” ist der Winkel zwischen der Hauptschneide eines Fräsers und der plane containing the direction of feed motion. Der "Anstellwinkel" ist der ergänzende Winkel zum Schneidenwinkel, d. h. die Summe beider Winkel beträgt 90°. Zum Beispiel, bei einem typischen Fräser ist der Schneidenwinkel der Winkel zwischen der Schneidkante und der plane, which the cutter generates. Beträgt dieser Winkel 60°, so ist der Anstellwinkel 30°. Nur bei 45°-Fräsern sind der Schneidenwinkel und der Anstellwinkel.
  • Was ist der Unterschied zwischen "Planfräser" und "Aufsteckfräser"?
    Diese beiden Begriffe beschreiben zwei unterschiedliche Eigenschaften von Fräsern. Fräser teilt man in folgende Kategorien ein: Oberflächentyp: plane Fläche, Schultern, 3D-Flächen usw. Cutter mounting method: on mandrel oder Aufnahmedorn, im Werkzeughalter, direkt in der Spindel Structure: monolithic; assembled Schneidstoff: Hochgeschwindigkeitsstahl, Schwermetall, Keramik usw.) Ein "Planfräser" wird eingesetzt zur Herstellung planer Flächen mit der Stirnseite des Fräsers. Der Begriff "Aufsteckfräser" bezieht sich auf die Konfiguration eines Fräsers: der Fräser verfügt über eine mittige Bohrung für die Montage in einen Aufnahmedorn. Diese Konfiguration ist für Planfräser gängig.
  • What is the difference between heavy and heavy-duty milling?
    Sometimes the terms “heavy” and “heavy-duty” are used mistakenly as synonyms. In principle, “heavy milling” (and “heavy machining") relates to milling large-sized and heavy-weight workpieces on powerful machine tools and refers more to the dimensions and mass of a workpiece. “Heavy-duty” specifies a degree of tool loading and mainly characterizes a mode of milling.
  • Welche Bearbeitungsbedingungen werden als ungünstig und welche als instabil definiert?
    Ungünstige Bearbeitungsbedingen sind: Werkstück mit einer Haut(z. B. Silikat oder Schlacke) signifikant unterschiedliches Aufmaß starke Schnittlast aufgrund unebener Werkstückfläche Oberfläche mit hoch-abrasiven Einschlüssen Der Begriff "instabile Bearbeitungsbedingungen" bezieht sich auf die Instabilität des kompletten Systems(Werkzeugmaschine, Werkstückspannung, Werkzeug, Werkstück) aufgrund: labiler Werkzeug- und Werkstückspannung großer Auskraglänge labiler Werkzeugmaschine dünnwandiger Werkstücke Die Begriffe "ungünstig" und "instabile" sind nicht austauschbar.
  • Wie wird die mittlere Spandicke gemessen?
    Im Fräsen ist die Spandicke nicht konstant, sie variiert - abhängig von verschiedenen Faktoren - während dem Fräsvorgang, abhängig von verschiedenen Faktoren. Die mittlere Spandicke (hm) ist ein virtueller Parameter, der die mechanische Belastung auf einen Fräser und eine Werkzeugmaschine kennzeichnet. Für die Berechnung der mittleren Spandicke hm gibt es unterschiedliche Methoden. Das gängigste Verfahren ist die Berechnung der mittleren Spandicke Verhältnis zur Hälfte des Eingriffswinkels , wobei letzterer is the central angle that corresponds to the arc of a contact between a milling cutter and a workpiece. BITTE ERGÄNZEN / VIELEN DANK!!!!!
  • Was versteht man unter Hochdruckkühlung (HPC) bzw. Ultrahochdruckkühlung (UHPC)?
    Für Hochdruck- und Ultrahochdruckkühlung gibt es keine strikten Definitionen. In der Regel sind Werkzeugmaschinen für einen Kühlmitteldruck von 10 - 15 bar ausgelegt. Dieses Niveau wird heute als niedriger Kühlmitteldruck definiert. Verschiedene moderne Bearbeitungszentren verfügen über die Option von 70 - 80 bar, was als Hochdruckkühlung bezeichnet wird. Ultrahochdruck bezieht sich auf 100 - 200 bar und mehr. Einige Hersteller von CNC-Werkzeugmaschinen stellen Pumpen für "mittleren Druck" her; diese haben Ventile für bis zu 50 bar.
  • Was ist der Nutzen des Fräsens mit Hochdruckkühlung?
    Bei der Metallzerspanung wird immer Wärme erzeugt, insbesondere beim Fräsen. Wenn die Wärmeentwicklung stark ist, bildet niedriger Kühlmitteldruck eine Dampfsperre auf den Oberflächen von Werkzeug und Werkstück. Diese Schicht wirkt wie ein Hitzeschild. Es entsteht eine Barriere, welche die Wärmeableitung aus der Schnittzone erschwert und damit die Werkzeugstandzeit verringert. Punktgenaue Hochdruck-Kühlmittelzuführung auf die Schneidkanten durchdringt diese Barriere und trägt zur Lösung der Problematik bei. Hochdruckkühlung kühlt die erzeugten Späne schnell herunter, sie werden dadurch hart und spröde. Die entstehenden dünnen, kleinen Späne sind leichter zu kontrollieren und abzuführen. Der schnelle Kühlmittelstrom spült die Späne weg, die Spanevakuierung wird erheblich verbessert und erneutes Zerspanen der bereits erzeugten Späne vermieden. Hochdruckkühlung verlängert die Standzeit einer Schneidkante, da Oxidations- und Adhäsionsverschleiß minimiert werden und die Resistenz gegen Ausbrüche verbessert wird. Da mit Hochdruckkühlung kleine Späne erzeugt werden, kann man Fräser mit kleineren Spannuten konstruieren, was wiederum eine engere Zahnteilung ermöglicht. Effektive Kühlung der Schnittzone stellt größere Schnittbreiten sicher. Insgesamt ist Hochdruckkühlung eine gute Option für höhere Schnittgeschwindigkeiten und Vorschubwerte und letztendlich zur Produktivitätssteigerung.
  • Worin besteht der Unterschied zwischen Fräsen mit Hochdruckkühlung mittels innerer, zielgerichteter Kühlmittelzuführung und Drehen mit Hochdruckkühlung?
    Das Drehwerkzeug hat eine Schneidkante, während das Fräswerkzeug über mehrere Zähne und somit mehr Kühlmittelaustritte verfügt. Ein Wendelschaftfräser mit Wendeschneidplattensets benötigt viel mehr Kühlmittelaustritte. Zwischen Druck, Geschwindigkeit und Durchflussvolumen des Kühlmittels besteht ein spezifischer Zusammenhang. Beim Fräsen mit innerer Kühlmittelzuführung muss die Hochdruckpumpe bestimmte Voraussetzungen erfüllen, um den korrekten Volumenfluss sicherzustellen, nicht nur den Druck an sich.
  • Bietet ISCAR in seinem Standardprogramm Wendeschneidplattenfräser für Hochdruckkühlung?
    Ja, ISCAR bietet angepasste Fräserlinien für die Bearbeitung von Titan und hoch hitzebeständigen Superlegierungen.
  • Warum werden für die Kühlmittelaustritte in Wendeschneidplattenfräsern für Hochdruckkühlung Düsen verwendet?
    Dafür gibt es zwei Gründe: einen technologischer und einen anwendungstechnischen. Hochdruckkühlung durch den Fräskörper erfordert Kühlmittelaustritte mit kleinem Durchmesser. Einschraubbare Düsen optimieren die Gestaltungsmöglichkeiten, da das Einbringen von Kühlmittelaustritten mit kleinen Durchmessern in Stahlwerkzeugen technisch anspruchsvoll und limitiert ist. Bei einer Schnitttiefe kleiner als die max. Länge eines Wendelschaftfräsers ist es nicht erforderlich, die Schneidenbereiche, die nicht am Zerspanprozess beteiligt sind, mit Kühlung zu versorgen. Zur Verbesserung der Zerspanleistung können die Austrittsdurchmesser der Düsen der dementsprechenden Pumpenleistung angepasst werden.
  • Warum wird eine große Anzahl von Fräsern für Hochdruckkühlung nur als Sonderwerkzeug gefertigt?
    Die meisten Endanwender von Fräsern für Hochdruckkühlung bearbeiten schwer zerspanbare Werkstückstoffe, wie z. B. Titanlegierungen. Oftmals muss eine große Menge an Material abgetragen werden. Um die Produktivität zu erhöhen, werden meist spezielle Werkzeugmaschinen eingesetzt, und - um eine maximale Steifigkeit zu erreichen - Kompaktwerkzeuge mit direkter Anbindung an die Maschinenspindel bevorzugt. Spezifische Werkzeugdurchmesser, Fräserlängen und Auskragungen sowie Aufnahmen, die von Anwender zu Anwender variieren, verlangen nach Fräsern für Hochdruckkühlung, die gemäß Anwenderspezifikation gefertigt werden.
  • Welche Produktfamilien enthält ISCARs Linie für Fräswerkzeuge?
    Diese Linie umfasst Fräswerkzeuge zum Fräsen von 90°-Schultern, Planfräsen, Eckfräsen, für die Bearbeitung hoher Schultern, zum 3D-Profilfräsen, Scheiben- und Nutenfräsen, Fasfräsen usw. Es gibt außerdem Werkzeuglinien für die spezielle Bearbeitungstechnik des Hochvorschubfräsens.
  • Die Logos von ISCARs Fräswerkzeug-Linien beginnen mit ;HELI” (abgeleitet von “helix”), und Begriffe wie “helikale Schneidkante” und “helikales Fräsen” werden oft als technische Vorteile hervorgehoben. Warum?
    In den frühen 1990er Jahren hat ISCAR HELIMILL auf den Markt gebracht – diese Linie bietet Fräswerkzeuge für einseitige Wendeschneidplatten mit helikaler Schneidkante. Die helikale Schneidkante, welche dem Drallwinkel eines Vollhartmetallfräsers nachempfunden wurde, bietet im montierten Zustand konstante Frei- und Spanwinkel über die komplette Schneidenlänge. Diese innovative Idee war ein absoluter Durchbruch und dient noch heute als Maßstab bei der Konstruktion von Fräswerkzeugen mit auswechselbaren Schneiden. Das Wording “HELI” weist auf die helikale Schneidkante hin, der speziellen Eigenschaft dieser innovativen Fräswerkzeuge.
  • Bietet ISCAR Wendeschneidplattenfräser für die Bearbeitung von Aluminium?
    Ja. ISCAR hat eine umfangreiche Palette an Wendeschneidplattenfräsern speziell für die effiziente Aluminiumbearbeitung entwickelt. Jede Werkzeuglinie verfügt über integrale oder leichtgewichtige Fräskörperdesigns, spezielle Klemmungen der Wendeschneidplatten, Systeme mit auswechselbaren Kassetten, geschliffene und polierte Wendeschneidplatten mit unterschiedlichen Eckenradien sowie last not least PKD-bestückte Wendeschneidplatten. Ein Großteil der Werkzeuge verfügt über innere Kühlmittelkanäle. Die Linie HELIALU von ISCAR ermöglicht hohe Schnittgeschwindigkeiten (HSM) bei der Bearbeitung von Aluminium und stellt gleichzeitig hohe Zeitspanvolumina sicher (MRR). 
  • Der Begriff “hoch positiv” wird oft im Zusammenhang mit Wendeschneidplattenfräsern genannt. Was bedeutet das genau?
    Generell bezieht sich dieser Begriff auf die Spanwinkel eines Wendeschneidplattenfräsers. Fortschritte in der Pulvermetallurgie ermöglichen helikale Schneidengeometrien mit einer Spanfläche, die in Bezug auf die Schneidkante stark geneigt ist. Daraus resultieren wiederum größere positive´Spanwinkel (regulär und axial). Die Definition “hoch positiv” unterstreicht dieses Merkmal.  Hinweis: Sie reflektiert den aktuellen technologischen Stand der Technik.  Da die Herstellung von Werkzeugen mit Hartmetall-Wendeschneidplatten sich ständig weiter entwickelt, kann man davon ausgehen, dass “hoch positiv" in der nahen Zukunft als “normal” betrachtet wird. 
  • Wendeschneidplatten werden meist aus Hartmetall-Schneidstoffen hergestellt. ISCAR bietet eine große Vielfalt an Schneidstoffsorten. Wo findet man Informationen über die Eigenschaften einer Schneidstoffsorte sowie die empfohlenen Schnittgeschwindigkeiten und Anwendungsbereiche?
    ISCAR bietet umfangreiche elektronische Kataloge und Suchfunktionen sowie Kataloge in Papierform, welche den Substrat-Typ, die Beschichtung sowie den Anwendungsbereich gemäß ISO-Norm und die empfohlenen Schnittgeschwindigkeiten spezifizieren. Der für Ihre Verkaufsregion zuständige ISCAR-Außendienstmitarbeiter unterstützt Sie außerdem gerne kompetent bei der Auswahl der für Ihre Bearbeitung am besten geeigneten Schneidstoffsorte.
  • Verfügen Wendeschneidplattenfräser über innere Kühlmittelzuführung?
    Nahezu alle in der jüngsten Vergangenheit auf den Markt gebrachten Wendeschneidplattenfräser verfügen über innere Kühlmittelzuführung, zielgerichtet, direkt zu jeder Schneidkante.
  • Manche Aufsteck-Planfräser verfügen nicht über innere Kühlmittelkanäle. Wie modifiziert man diese Fräser, falls innere Kühlmittelzufuhr erforderlich ist?
    In den meisten Fällen ist keine Modifizierung notwendig. Stattdessen empfiehlt ISCAR Klemmschrauben mit einstellbaren Kühlmitteldüsen zur einfachen Lösung dieser Anforderung. Die Schrauben sichern nicht nur den Aufsteckfräser auf dem Aufnahmedorn, sondern liefern auch eine effektive, Kühlmittelzuführung direkt in die Schnittzone und verbessern die Spanabfuhr. Die Kühlmitteldüse, als bewegliches Teil der Schraube, ermöglicht eine einfache und schnelle Einstellung der Kühlmittelzufuhr, abhängig von der Auskraglänge des Fräsers, Wendeschneidplattengröße oder Anforderungen der Bearbeitung.
  • Wie stellt man das Anziehen des korrekten Anzugdrehmoments für Klemmschrauben von Wendeschneidplatten sicher?
    In den Linien für Fräswerkzeuge bietet ISCAR zwei Typen von Drehmomentschlüsseln: mit einstellbarem oder mit fixiertem Drehmoment. Der erst genannte Typ ermöglicht es dem Anwender, das Drehmoment innerhalb eines vorgegebenen Bereichs einzustellen. Der zweite Typ verfügt über ein voreingestelltes Drehmoment. ISCAR-Kataloge und weitere technische Publikationen geben Auskunft über das jeweilig erforderliche Drehmoment für Klemmschrauben. Des Weiteren ist diese Angabe mittlerweile auf dem Fräskörper eingraviert.
  • Welcher Parameter eignet sich besser für die Steuerung der Produktivität – Variierung des Vorschubs oder der Schnitttiefe innerhalb angemessener Begrenzung?
    Auf diese Frage gibt es keine eindeutige Antwort, da sie von mehreren Faktoren abhängig ist. Generell kann jedoch gesagt werden, dass beim gleichem Zeitspanvolumen eine Erhöhung des Vorschubs in Kombination mit reduzierter Schnitttiefe günstiger ist, als die umgekehrte Variation. Diese Strategie führt in der Regel zu längeren Standzeiten.
  • Wie findet man produktivere Fräswerkzeuglösungen für eine spezifische Bearbeitung?
    Wenn die Schnittparameter bekannt sind, ist der ITA (ISCAR Tool Advisor) - ein elektronischer Werkzeugberater auf ISCARs Homepage - ein sehr hilfreiches Tool. Diese freie Software kann auch auf Smartphones heruntergeladen werden. Für weitere, detailliertere Unterstützung setzen Sie sich bitte mit dem für Ihre Verkaufsregion zuständigen Außendienstmitarbeiter in Verbindung.
  • Was ist Dreh-Fräsen?
    Beim Dreh-Fräsen bearbeitet ein Fräser ein rotierendes Werkstück. Dieses Verfahren kombiniert Fräs- und Drehtechnik und bietet viele Vorteile.
  • Welches sind die Vorteile des Dreh-Fräsens gegenüber klassischer Drehbearbeitung?
    Das Drehen von ungleichmäßigen Oberflächen kennzeichnet sich durch unterbrochenen Schnitt, was in unerwünschter Schnittlast, schlechter Oberflächengüte und vorzeitigem Werkzeugverschleiß resultiert. Beim Dreh-Fräsen kommt ein Fräser, der für unterbrochenen Schnitt mit zyklischer Schnittlast geeignet ist, zum Einsatz. Beim Drehen von langspanenden Werkstückstoffen ist die Entsorgung der Späne schwierig. Die geeignete Spanformergeometrie festzustellen ist ebenfalls schwierig. Ein für das Dreh-Fräsen eingesetzter Fräser erzeugt kurze Späne, was die Handhabung des Späneabfalls erheblich erleichtert. Beim Drehen exzentrischer Bereiche von rotierenden Bauteilen (Kurbelwellen, Nockenwellen usw.) verursachen exzentrische Massen von Bauteilen unausgeglichene Schnittkräfte, was sich nachteilig auf die Zerspanleistung auswirkt. Dreh-Fräsen minimiert diesen negativen Effekt deutlich aufgrund der geringen Rotationsgeschwindigkeit. Beim Drehen ist die Rotation schwergewichtiger Bauteile, was die Schnittgeschwindigkeit definiert, begrenzt durch die Leistungsmerkmale des Hauptantriebs. Erlaubt es der Antrieb nicht, große Massen mit der erforderlichen Geschwindigkeit zu rotieren, ist die Schnittgeschwindigkeit weit vom Optimum entfernt, was sich in einer schlechten Zerspanleistung niederschlägt. Dreh-Fräsen ist eine Möglichkeit, diese Problematik zu bewältigen.
  • Wie berechnet man Schnittdaten für das Dreh-Fräsen?
    Die Berechnungsmethode findet man in der gedruckten Ausgabe der ISCAR-Broschüre “Welcome to ISCAR’s World". Die elektronische Version findet Sie unter www.iscar.de. Benötigen Sie weitere Unterstützung, berät Sie zusätzlich Ihr Ansprechpartner im technischen Außendienst.
  • What is the difference between radial chip thinning and axial chip thinning?
    Chip thinning refers to decreasing maximum chip thickness hmax compared to feed per tooth fz.
    Two factors cause this decrease:
    • Cutting geometry of a milling tool, specifically the tool cutting edge angle χr when it is less than 90° ("axial chip thinning"). Good examples of axial chip thinning are fast feed milling and machining 3-D surfaces at shallow depth of cut by ball nose or toroidal-shape milling tools.
    • Influence of width of cut ae. If ae in peripheral milling and face milling is smaller than the radius of the milling tool, hmax becomes lower than fz. This effect is known as “radial chip thinning”. Understanding chip thinning is very important. Maintaining necessary chip thickness requires appropriate increase of feed per tooth and is a key element for correctly programmed fz.
  • What is a slab mill?
    A slab mill is a type of a cylindrical (plain) milling cutter – a milling tool with helical cutting teeth on its cylindrical periphery. Slab mills generally feature large sizes and have a central bore for arbor mounting, mainly in horizontal milling machine tools. Slab mill length is considerably greater than its diameter. These mills are intended for machining an open surface (mostly plane) of a workpiece when the surface width is less than the mill length. Slab mills were very common in the past but today they are used quite rarely.
  • Was sind die Vor- und Nachteile der Wendeschneidplattenfixierung mittels Keilklemmung?
    Der größte Vorteil der Keilklemmung ist ein schneller und einfacher Wendeschneidplatten- oder Schneidkantenwechsel. Bei Planfräsern, insbesondere großen Werkzeugen, ist Keilklemmung eine sehr häufige Klemmmethode. Diese Fräser arbeiten in der Regel unter schwierigen Bedingungen und laufen oft heiß. Für solche Fräser bevorzugen Maschinenbediener deshalb oft die Keilklemmung. Ein Nachteil jedoch ist, dass die Keilklemmung ein Hindernis für den Spanfluss darstellt, was sich negativ auf die Zerspanleistung des Fräsers auswirkt. Intensiver Kontakt zwischen Spänen und dem Klemmkeil führt zum Verschleiß des Klemmkeils. Verschmutzungen der Klemmkeile können zusätzliche Beeinflussungen verursachen.
  • What are the advantages and disadvantages of clamping inserts in milling cutters by wedge?
    The main advantages of clamping indexable inserts in a milling cutter by wedge are quick and easy insert replacement or changing a worn cutting edge of the insert (the insert indexing). Clamping by wedge is more common for indexable face mills, especially large-sized. These mills usually work in tough conditions and often become hot. Machine operators prefer the wedge clamping design for such mills.
    However, the wedge, an additional part above the insert in the cutter structure, produces an obstacle for chip flow in the cutter chip gullet, which worsens chip evacuation and reduces cutter performance. This is a major disadvantage of wedge clamping. Intensive contact between the chips and the wedge results in the detrition wear of the latter and shortens its tool life.
  • How to estimate tool life for ceramic cutting tools?
    Ceramic tools behave differently than carbide tools. In most cases, the end of a tool life is determined by the acceptable level of burrs and not by wear size.
    Fräswerkzeuge zur Bearbeitung von Formen und Profilen
  • Worin besteht der Unterschied zwischen Profilfräsen, Konturfräsen und Fromfräsen?
    Grundsätzlich beziehen sich diese drei Definitionen auf die gleiche Sache: das Fräsen von 3D-Flächen.
  • Welche Industriebereich charakterisieren sich durch eine Vielzahl von Profilfräsbearbeitungen?
    Zuallererst kann hier der Werkzeug- und Formenbau genannt werden, gefolgt von der Luft- und Raumfahrtindustrie, jedoch wird in nahezu jedem Industriezweig bis zu einem gewissen Grad Profilfräsen angewendet.
  • Welches sind die gängigsten Werkzeuge für Profilfräsbearbeitungen?
    Zum Schruppfräsen, dem "Vorformen" von 3D-Flächen werden unterschiedliche Werkzeuge eingesetzt, auch 90°-Fräser für allgemeine Anwendungen. Hochvorschubfräser sind hocheffiziente Schruppwerkzeuge. Die meisten Profilfräsbearbeitungen werden jedoch mit torischen Fräsern und Kugelkopffräsern durchgeführt, da diese in jede Bearbeitungsrichtung eine präzise Form sicherstellen. * gehen Sie zum entsprechenden Bereich in den FAQs
  • Hat ISCAR Wendeschneidplatten mit Spanteilergeometrie für Profilfräsbearbeitungen im Programm?
    Ja und zwar mit der MILLSHRED-Linie mit auswechselbaren Fräsköpfen und runden, segmentierten Wendeschneidplatten,
  • Was it der effektive Fräserdurchmessers eine Fräswerkzeugs?
    Im Profilfräsen hängt der Fräserdurchmesser aufgrund der nicht geradlinigen Werkzeugform mit der Schnitttiefe zusammen; and it is not the same for different areas of the tool cutting edge that is involved in milling. Der effektive Durchmesser is´t der größte largest true cutting diameter: maximum of the cutting diameters of these areas. In calculating cutting data, it is very important to consider the effective diameter, because the real cutting speed relates to the effective diameter, while the spindle speed refers to the nominal diameter of a tool. BITTE UM UNTERSTÜTZUNG / ICH BLICKE NICHT DURCH / VIELEN DANK
  • Profilfräswerkzeugtypen umfasst das ISCAR-Programm?
    ISCARs Linien für Profilfräswerkzeuge enthalten Hochvorschubfräser, torische Fräser und Kugelkopffräser in folgendene Konfigurationen: Werkzeuge mit Wendeschneidplatten Vollhartmetall-Schaftfräser Auswechselbare Fräsköpfe mit MULTI-MASTER*Schnittstelle * Gehen Sie zum entsprechenden Abschnitt in den FAQs
  • Was versteht man unter Restfräsen?
    Produktive Fräsbearbeitungen erfordern den Einsatz von Werkzeugen mit längerer Lebensdauer und höherer Steifigkeit, um ein hohes Zeitspanvolumen zu erreichen. Oft erlauben die Form und die Abmessungen dieser Werkzeuge in manchen Bereichen keine Bearbeitung; wie beispielsweise in der Kavität einer Gesenkform. Der dadurch verbleibende restliche Werkstückstoff wird durch Restfräsen abgetragen – ein Werkzeug mit kleinerem Durchmesser bearbeitet die Bereiche mit dem restlichen Werkstückstoff.
    Vollhartmetall-Schaftfräser
  • Bietet ISCAR Vollhartmetall-Schaftfräser für alle Werkstückstoffgruppen?
    Ja. ISCARs SOLIDMILL-Linie umfasst unterschiedliche Linien von Vollhartmetall-Schaftfräsern für die Bearbeitung unterschiedlicher Werkstückstoffe: Stahl, rostbeständiger Stahl, Gusseisen usw.. Es steht eine große Auswahl zur Abdeckung der Anwendungen in allen Werkstückstoffgruppen gemäß der ISO-Norm zur Verfügung: P, M, K, N, S und H.
  • Welche Typen von Vollhartmetall-Schaftfräsern bietet ISCAR als Standardwerkzeuge?
    Die meisten 90°-Schaftfräser, außerdem – Kugelkopffräser, Hochvorschubfräser, Fasfräser sowie Fräser zum Entgraten. Desweiteren hat ISCAR Schaftfräser für die HSM-Bearbeitung, insbesondere trochoidales Fräsen, im Programm.
  • Worin bestehen die Vorteile des trochoidalen Fräsens?
    In der Regel kommt trochoidales Fräsen bei der Bearbeitung von Nuten und Taschen zum Einsatz. bEIM trochoidalen Fräsen a fast-rotating tool moves along arc and “slices” a thin but wide layer of material. When the layer is removed, the cutter advances deeper into the material radially and then repeats the slicing. This method ensures uniform tool engagement and stable average chip thickness. Therefore, the tool experiences constant load that causes uniform wear and predictable tool life. The small thickness of sliced material significantly reduces heat impact on the tool, on the one side, and ensures increasing the number of the tool teeth, on the other hand. Das Verfahren ermöglicht hohe Abspanraten, eine reduzierte Leistungsaufnahme und längere Standzeiten. BITTE ERGÄNZEN / VIELEN DANK
  • What is a "trochoid"?
    "Trochoid", or "trochoidal curve", is a general name for a curve described by a fixed point on a circle as it rolls along a straight line or curves without slipping.
  • Was ist das Geheimnis der CHATTERFREE-Geometrie?
    CHATTERFREE steht für das spezifische Design mehrerer Linien für ISCAR Vollhartmetall-Schaftfräser. Die Hauptmerkmale von CHATTERFREE sind: ungleiche Teilung und variabler Spiralwinkel . Dieses Konzept resultiert in stark reduzierten Vibrationen bis hin zu deren kompletter Eliminierung und somit in stark verbesserter Zerspanleistung in längeren Standzeiten.
  • Was ist ein variabler Spiralwinkel?
    "Variabler Spiralwinkel" bezieht sich auf den Spiralwinkel in vibrationsfreien CHATTERFREE-Vollhartmetall-Schaftfräsern. Ein typischer Vollhartmetall-Schaftfräser hat helikale Schneidkanten, und der Spiralwinkel bestimmt die Neigung der Zähne. In herkömmlichen Schaftfräsern ist der Spiralwinkel aller Zähne derselbe, in vibrationsfreien Geometrien variiert dieser jedoch. Mit dem Begriff “variabler Spiralwinkel” verbindet man in der Regel zwei Merkmale: 1) Combining flutes with unequal helix angles where the angles are constant along every flute. BITTE ERGÄNZEN / DANKE 2) Variierende Spiralwinkel entlang der Zähne. Die Bezeichnung “variabler Spiralwinkel ist jedoch nur in Zusammenhang mit dem oben genannten 1. Merkmal korrekt. Beim 2. oben genannten Merkmal ist "unterschiedliche Spiralwinkel” die korrekte Bezeichnung.
  • Warum werden FINISHRED-Schaftfräser oft als “Two in One”-Werkzeug bezeichnet?
    FINISHRED-Schaftfräser sind 4-schneidig, dies sind 2 segmentierte Schneiden und 2 durchgehende Schneiden. Daraus entsteht die Schrupp-Schlicht-Geometrie, also “Two in One”. Die Werkzeuge ermöglichen Schruppparameter und erzeugen eine Semi-Finish bzw. Finish-Oberflächengüte. Auf diese Weise kann ein einziges Werkzeug zwei Schaftfräser ersetzen und die Bearbeitungszeit und Leistungsaufnahme drastisch reduzieren, also die Produktivität genauso drastisch erhöhen.
  • Bietet ISCAR Anleitungen für das Nachschleifen von Vollhartmetall-Schaftfräsern?
    Ja. Jeder Produktkatalog und diverse technische Broschüren enthalten diese Informationen. Selbstverständlich steht Ihnen auch unser zuständiger Außendienstmitarbeiter unterstützend hierfür zur Verfügung.
  • Was ist eine length series? BITTE ERGÄNZEN / DANKE
    Vollhartmetall-Schaftfräser desselben Typs variieren innerhalb einer Linie oftmals in der Gesamtlänge. Gemäß der Längeneinteilung gibt es kurze Fräser, mit mittlerer Länge oder lange Fräser. Zusätzlich gibt es teilweise noch Serien mit extra-kurzen oder extra-langen Fräsern. Grundsätzlich bieten kurze VHM-Schaftfräser die beste Stabilität und Steifigkeit, extra-lange VHM-Schaftfräser sind für tiefe Bearbeitungen ausgelegt.
  • Was ist ein slot drill? BITTE ERGÄNZEN / DANKE
    Als “Slot drill” bezeichnet man einen Schaftfräser, der can cut straight down. Slot drills have at least one center cutting tooth. Primary use of the slot drills is milling key slots. Normally, the slot drills are two-flite mills, but often they have three and even four flutes. BITTE ERGÄNZEN / DANKE ISCARs VHM-Kugelkopffräser sind 2- oder 4-schneidig. How to choose a more suitable number of flutes for a ball nose endmill? BITTE ERGÄNZEN / DANKE 4-schneidige Vollhartmetall-Kugelkopffräser stellen eine robuste und produktive Alternative für unterschiedliche Anwendungen dar, insbesondere für Vorschlicht- und Schlichtbearbeitungen. Im Gegensatz dazu, eignet sich die 2-schneidige Ausführung mit einer größeren Spanformernut besser für Schruppbearbeitungen und stellt eine bessere Spanevakuierung sicher. Auch zum Feinschlichten eignet sich diese Version, aufgrund der besseren Spanevakuierung. Beim Fräsen mit geringer Schnitttiefe sollte man bei der Berechnung des Vorschubs pro Zahn nur 2 effektive Zähne berücksichtigen; die Vorteile eines mehrschneidigen Designs werden reduziert. 2-schneidige Vollhartmetall-Schaftfräser sind hier die bessere Wahl.
  • ISCARs VHM-Kugelkopffräser sind 2- oder 4-schneidig. Wie wählt man die geeignete Zähnezahl für einen Kugelkopffräser aus.
    4-schneidige Vollhartmetall-Kugelkopffräser stellen eine robuste und produktive Alternative für unterschiedliche Anwendungen dar, insbesondere für Vorschlicht- und Schlichtbearbeitungen. Im Gegensatz dazu, eignet sich die 2-schneidige Ausführung mit einer größeren Spanformernut besser für Schruppbearbeitungen und stellt eine bessere Spanevakuierung sicher. Auch zum Feinschlichten eignet sich diese Version, aufgrund der besseren Spanevakuierung. Beim Fräsen mit geringer Schnitttiefe sollte man bei der Berechnung des Vorschubs pro Zahn nur 2 effektive Zähne berücksichtigen; die Vorteile eines mehrschneidigen Designs werden reduziert. 2-schneidige Vollhartmetall-Schaftfräser sind hier die bessere Wahl.
  • Bietet das ISCAR Vollhartmetall-Schaftfräserprogramm auch Schäftfräser für die Bearbeitung von Miniaturbauteilen?
    Die Antwort hängt von der Definition des Begriffs "Miniatur" ab. miniature. Die Übergänge zwischen den Begriffen “Mini”, “Micro”, “Miniatur” usw. sind eher fließend. Natürlich realisiert jeder den Durchmesserbereich, auf den sich diese Begriffe beziehen. ISCARs Linien für Vollhartmetall-Schaftfräser enthalten Durchmesser im 10tel Millimeterbereich. Beispielsweise beginnen Standard-Kugelkopffräser für die Bearbeitung von Stegen beim Mindestdurchmesser 0.1 mm.
  • Does ISCAR produce solid ceramic endmills? Where is their application most effective?
    ISCAR's product range includes a family of solid ceramic endmills. They are mainly applied to machining high temperature superalloys, heat resistant stainless steel, cast iron and graphite.
    Modulare Fräswerkzeuge mit Wechselköpfen
  • Wie montiert man einen Fräskopf in einen Schaft?
    Ein Fräskopf besitzt 1. einen kurzen Zentrierkonus am Gewinde und 2. eine Plananlage, für eine korrekte Fräskopflage im Schaft. Durch den Zentrierkonus am Gewinde wird eine hohe Wiederholgenauigkeit erreicht. Das Gewinde sorgt für eine stabile und sichere Verbindung mit dem Schaft. Mittels eines speziellen Schlüssels wird das präzisionsgeschliffene Gewinde angezogen und gelöst.
  • Welches sind die Vorteile dieser Plananlage?
    Vor allem erhöht sie die Steifigkeit bei einem Werkzeug, das aus Schaft und Fräskopf besteht. Außerdem trägt sie zur Belastungsfähigkeit während der Fräsbearbeitung bei und sorgt für einen stabilen Bearbeitungsprozess sowie für eine Reduzierung von Vibrationen und Leistungsaufnahme. Eine hervorragende Wiederholgenauigkeit beim Fräskopfwechsel ist ebenfalls sichergestellt, und zeitaufwändiges erneutes Vermessen des Werkzeugs entfällt. Der Fräskopf kann innerhalb der Maschine gewechselt werden.
  • Was verbirgt sich hinter dem Begriff “the initial gap” ?
    Beim manuellen Anziehen des Fräskopfs stoppt dieser an einem bestimmten Punkt, und es entsteht die sogenannte Initial Gap, ein schmaler Spalt zwischen den Anlageflächen des Fräskopfs und dem Schaft. Ab diesem Punkt kann der Fräskopf nur noch manuell mit dem speziellen Schlüssel angezogen werden. Durch dieses Anziehen verformt sich der Anlagebereich des Stahlschafts in radialer Richtung. Erst dann entsteht eine kraftschlüssige Verbindung zwischen Fräskopf und Schaft. Dieser Spalt wird "Initial Gap" genannt und ist ein essentielles Merkmal der MULTI-MASTER-Schnittstelle. Abhängig von der jeweiligen Gewindegröße ist dieser Spalt nur einige Zehntelmillimeter groß. WICHTIG: Kann der Fräskopf manuell bis zur Anlagefläche des Schafts angezogen werden (es bleibt kein Initial Gap), ist das Schaftmaterial labil geworden, und der Schaft muss ausgetauscht werden.
  • Warum hat das MULTI-MASTER-Gewinde ein spezielles Profil?
    MULTI-MASTER-Fräsköpfe werden aus Schwermetall hergestellt. Obwohl dies ein extrem hitzebeständiges und hartes Material ist, verringert es die Belastbarkeit im Vergleich zu beispielsweise Schnellarbeitsstahl (HSS). Bei der Entwicklung von Schwermetallgewinden müssen deshalb vor allem Stressfaktoren reduziert werden.<br/> Die MULTI-MASTER-Schnittstelle ist außerdem relativ klein: die nominellen Durchmesser der Gewinde betragen 4-15 mm. Diese Abmessungen und die Notwendigkeit, den hohen Anforderungen an die Festigkeit gerecht zu werden, setzen dem Gewicht des Gewindeprofils möglicherweise Grenzen.<br/> All diese Faktoren machen die Verwendung von Standardgewinden problematisch und diktieren im Prinzip ein bestimmtes Gewindeprofil, das den Schnittstellenanforderungen entspricht. ISCAR hat daraufhin ein spezielles Gewindeprofil entwickelt, das unter der Bezeichnung “T-Gewinde” bekannt ist.
  • Welche MULTI-MASTER-Fräskopftypen hat ISCAR im Programm?
    • Vollhartmetall-Schaftfräsköpfe in verschiedenen Ausführungen– 90°, 45°, 60°, etc.
    • Profil-Fräsköpfe mit Kugelkopfgeometrien, torischen, konkaven Radien und weiteren Geometrien
    • Fräsköpfe zum Hochvorschubfräsen
    • Schlitz- und Nutenfräsköpfe für die Bearbeitung von Sicherungsringen, O-Ringen, T-Nuten, usw.
    • Gewindefräsköpfe
    • Fräsköpfe zum Zentrieren, Senken und Fasen
    • Gravurfräsköpfe
    Die Fräsköpfe verfügen über unterschiedliche Schneidenanzahlen, Spiralwinkel und Schneidengeometrien für die produktive Bearbeitung eines großen Werkstückstoffspektrums.
  • Was versteht man unter der wirtschaftlichen Ausführung eines Fräskopfs?
    Es gibt zwei Typen der MULTI-MASTER-Vollhartmetall-Schaftfräsköpfe.<br/> 1. MULTI-MASTER-VHM-Schaftfräsköpfe, die den ISCAR-Standard-VHM-Schaftfräsern entsprechen, sich jedoch in Gesamtlänge und Schneidkantenlänge unterscheiden. Ein Vorteil hierbei ist die große Auswahl der zur Verfügung stehenden auswechselbaren Fräsköpfe.(im Prinzip  die gesamte Standardlinie der VHM-Fräser). Beim Schlichten und Fräsen harter Werkstückstoffe wird der Zerspanungsprozess durch eine höhere Schneidenanzahl stabiler und produktiver. Diese Fräsköpfe werden aus abgestuften zylindrischen Rohlingen geschliffen.<br/> 2. Wirtschaftliche MULTI-MASTER-Vollhartmetall-Schaftfräserköpfe; ihre Form erhalten diese Fräsköpfe durch Pressen und Sintern sowie anschließendes Schleifen der endgültigen Form und Präzision. Diese Fräsköpfe verfügen über eine extrem stabile Schneide, so dass der Vorschub pro Zahn im Vergleich zum erst genannten Fräskopftyp enorm erhöht werden kann. Die Presstechnologie ermöglicht die Herstellung verschiedener komplexer Formen; die wirtschaftliche Ausführung hat nur zwei Schneiden.
  • Warum haben MULTI-MASTER-Schlüssel zwei Öffnungen?
    Die eine Öffnung ist für die mehrschneidigen MULTI-MASTER-VHM-Fräsköpfe des 1. Typs (siehe oben) bestimmt, die andere Öffnung für die wirtschaftliche Ausführung mit zwei Schneiden.
  • Bietet die MULTI-MASTER-Linie auch Werkzeuge zur Bohrungsbearbeitung?
    Ja. 45°, 30° und 60° Fräsköpfe sind nicht nur zum Fasen, sondern auch zum Senken und Zentrieren geeignet. Außerdem stehen Zentrierbohrköpfe zur Verfügung.
  • Ist ein Zentrierbohrkopf wirklich eine gute Werkzeuglösung? Es gibt verschiedene, preisgünstige doppelseitige Standard-Kombinations-Zentrierbohrer und Senkbohrer aus HSS.
    Im Vergleich zu den oben genannten HSS Kombinations- und Senkbohrern, ermöglicht der Zentrierbohrkopf viel längere Standzeiten. Die Fräsköpfe arbeiten mit hohen Schnittparametern und erhöhen somit die Produktivität. Wir empfehlen deshalb, zur Entscheidungsfindung die aktuellen Fertigungskosten und alle relevanten Faktoren zu analysieren.
  • Wie ist die Präzision der Fräsköpfe?
    Der nominelle Durchmesser der Schaftfräsköpfe mit regulärer Präzision hat folgende Toleranzklassen: E8 für mehrschneidige Fräsköpfe aus Rohlingen hergestellt, H9 für die wirtschaftliche Ausführung. Präzisionsfräsköpfe zum Schlicht-Profilfräsen sind mit Toleranzklasse H7 und die Fräsköpfe zum Fräsen von Aluminium mit Toleranzklasse H6 gefertigt. Die Durchmessertoleranz für den zylindrischen Schnittbereich der Fräsköpfe zum Fasen, Senken und Zentrieren ist H10.
  • Wie ist die Wiederholgenauigkeit der MULTI-MASTER-Fräsköpfe?
    Wie bereits oben erwähnt, ist einer der Vorteile der Plananlage die hohe Wiederholgenauigkeit, welche enge Toleranzen im Verhältnis von der Auskragung des Fräskopfs zur Anlagefläche des Schafts ermöglicht. Bei den meisten VHM-Schaftfräsköpfen ist die Toleranz ±0.01 mm.
  • Bietet ISCAR MULTI-MASTER-Fräsköpfe für die Bearbeitung von gehärtetem Stahl?
    Ja. Diese Fräsköpfe sind aus einer hochfesten und verschleißresistenten Feinstkorn-Schneidstoffsorte gefertigt; Sie verfügen über enge Maßtoleranzen.
  • Welche Schafttypen gibt es und für welche Anwendungen werden Sie eingesetzt?
    Es gibt verschiedene Schaftausführungen: Zylindrisch mit Schaftfreischliff. Der Freischliff kann gerade oder konisch sein.
    Zylindrische Schäfte und Schäfte mit geradem Freischliff vom Typ A laut MULTI-MASTER-Bezeichnungssystem sind für unterschiedliche allgemeine Anwendungen geeignet. Eine verstärkte Ausführung ist ebenso verfügbar, vorwiegend geeignet zum Fräsen von Federnuten oder zum Hochvorschubfräsen (HFM), geeignet für die Klemmung in Weldonschäften.
    Typ B ist eine verstärkte Ausführung mit einem relativ kurzen konischen Freischliff mit einem seitlichen Kegelwinkel von 5°. Er kennzeichnet sich durch eine stabileren Schaft und wird vor allem in der Schwerzerspanung eingesetzt.

    Für Bearbeitungen mit langen Auskraglängen ist Typ D mit seinem langen konischen Freischliff eine gute Option. Hier beträgt der seitliche Kegelwinkel 1° dieser Fräser eignet sich vornehmlich für das Fräsen tiefer Taschen und von Kavitäten, hoher Schultern usw. Er sollte nicht unter hoher Belastung zum Einsatz kommen.
    Für kurze Auskraglängen bietet die MULTI-MASTER-Linie Schäfte mit einer Spannzangenaufnahme. Diese wird direkt in das Spannfutter montiert, anstatt der Spannzange. Steifigkeit und Präzision werden durch diese direkte Montage verbessert und die Gesamtlänge im Verhältnis zur Anlagefläche einer Maschinenspindel reduziert.
    Die MULTI-MASTER-Linie beinhaltet auch lange, zylindrische Schäfte (min. 10xD). Diese sind vor allem für Sonderwerkzeuge vorgesehen, wenn der Schaft zusätzlich bearbeitet werden muss, um spezielle Formen bearbeiten. Diese Nachbearbeitung kann auch vom Kunden selbst durchgeführt werden. Es handelt sich im Prinzip um Rohlinge mit einem inneren T-Gewinde, und für den Fall weiterer Bearbeitungen (Drehen, Außenschleifen usw.) sind sie mit einer Zentrumsbohrung auf der Rückseite ausgestattet
    Die MULTI-MASTER-Linie bietet außerdem eine Auswahl an Verlängerungen und Reduzierungen zur Anbindung an weitere modulare ISCAR- Systeme (z.B. FLEXFIT). 
  • Aus welchem Material sind die Schäfte hergestellt? Wie kann das geeignete Schaftmaterial bestimmt werden?
    Die Schäfte sind aus folgenden Materialien hergestellt: Stahl, Hartmetall und Schwermetall (eine Legierung, mit einem Schwermetall-Anteil von 90 % und mehr).
    Hinsichtlich der Funktionalität ist ein Stahlschaft am vielseitigsten. Aufgrund der enormen Steifigkeit von Hartmetall wird ein Hartmetallschaft in erster Linie zum Schlichten und Vorschlichten sowie für Bearbeitungen mit großer Auskraglänge und zum Fräsen von innenliegenden, umlaufenden Nuten eingesetzt. Bei instabilen Bedingungen kann ein Schwermetallschaft gute Ergebnisse erzielen, aufgrund der Vibrationsstabilität dieses Materials. Schwermetallschäfte empfehlen sich jedoch nur für die Schwerzerspanung.  
  • Eignen sich MULTI-MASTER-Werkzeuge für innere Kühlmittelzufuhr?
    Ja, es gibt Schäfte mit inneren Kühlmittelkanälen.&
  • Können MULTI-MASTER-Schäfte in erhitzte Schrumpfspannfutter und Spannfutter aufgenommen werden?
    Hartmetall- oder Schwermetallschäfte (siehe Antwort auf Frage 14) eignen sich für die erhitzte Aufnahmemethode. Es wird nicht empfohlen, Stahlschäfte in erhitzte Schrumpfspannfutter oder Spannfutter zu klemmen.
  • Ist es erforderlich, T-Gewinde zu schmieren, wenn die Fräsköpfe auf einen Schaft montiert werden?
    Nein. Das MULTI-MASTER T-Gewinde ist stets von Schmiermitteln freizuhalten!
    Hochvorschubfräser
  • Welche ISCAR-Fräswerkzeuge wurden zum Hochvorschubfräsen entwickelt?
    ISCARs Linie für Hochvorschubfräser umfasst Wendeplattenfräser, modulare Multi-Master-Fräswerkzeuge und VHM-Fräswerkzeuge.
  • Für welche Fräsbearbeitungen können Hochvorschubfräser am effektivsten eingesetzt werden?
    Am effektivsten können Hochvorschubfräser zum Schruppen planer Flächen, Taschen und Kavitäten eingesetzt werden.
  • What is the meaning of the “Triple F” or "FFF" that is often mentioned in ISCAR technical editions and presentations?
    "FFF" refers to fast feed face milling or fast feed facing. Rough milling planes is one of most the efficient and widespread applications for FF cutters. The operation usually relates to face milling, so the FFF acronym refers usually to fast feed face milling. FFF can also mean fast feed facing, as milling plane operations are often known as facing.
  • Hochvorschubfräsen wird als hoch effiziente Bearbeitung mit hohen Zeitspanvolumina bei der Bearbeitung von Stahl oder Gusseisen bezeichnet. Können Hochvorschubfräser auch für schwer zerspanbare Werkstückstoffe wie Titan oder hoch hitzebeständige Legierungen eingesetzt werden?
    Ja, Hochvorschubfräser können auch für die Bearbeitung von Edelstahl, Titan und hoch hitzebeständigen Legierungen eingesetzt werden. Vorschubfräser können für die Bearbeitung schwer zerspanbarer Werkstückstoffe eingesetzt werden. In diesem Anwendungsfall werden im Gegensatz zur Stahl- oder Gussbearbeitung deutlich positivere Schneidengeometrien eingesetzt. Der Vorschub pro Zahn ist dadurch geringer. Die Produktivität ist jedoch immer noch deutlich höher als beim Einsatz von Standard-Plan- und Eckfrässystemen.
  • What are MF milling tools?
    MF means “moderate feed”: moderate comparing with “fast” in FF milling but faster than the standard in traditional milling. The MF method is intended for increasing productivity when using slow low-power machines, milling heavy workpieces, etc.
  • The LOGIQ campaign introduced new families of indexable FF milling cutters with a diameter range typically covered by solid carbide endmills. Can these new cutters successfully compete with the solid carbide design concept?
    Yes. The design of the cutters ensures a multi-teeth tool configuration. Let’s consider the NAN3FEED mill family as an example. They have 2 and 3 teeth for nominal diameters 8 and 10 mm (.315 and .394”) correspondingly. In a cutter carrying replaceable inserts, only the insert - a small part of the cutter - is made from cemented carbide. This means that the indexable design consumes far less of this expensive material than a solid carbide solution. The NAN3FEED insert with its 3 cutting edges ensures triple edge indexing, which is also cost-effectiveness. As the insert is small, it is placed simply in a pocket via a key with a magnetic boss on the key handle. The economical efficiency and ease of use make the family competitive with solid carbide tools.
    Nut- und Scheibenfräser
  • Welche Werkzeuge setzt man zum Schlitzfräsen ein?
    Unterschiedliche Fräsertypen. Scheibenfräser, Schaftfräser, Wendelschaftfräser (lange Schneiden) und Planfräser eignen sich zum Schlitz- und Nutenfräsen. Allerdings sind nur 3-seitig schneidende Scheibenfräser speziell für die Fertigung von Schlitzen und Nuten ausgelegt. Die anderen Fräser sind in erster Linie für unterschiedliche Fräsbearbeitungen geeignet.
  • Worin unterscheiden sich “Schlitz” und“Nut”?
    Die Begriffe “Schlitz” und“Nut” sind oftmals Synonyme. Ein “Schlitz” ist jedoch in der Regel schmal sowie vergleichsweise lang und offen (mindestens an einem Ende); Eine “Nut”, ist in der Regel umlaufend oder ein helikaler Kanal.
  • Slot milling tools are often referenced as slotting tools. Is this correct?
    The word “slotting”, commonly known as “slot milling”, is widespread in shop talk but the two actions are not identical or interchangeable. Slotting refers specifically to a stage in planning or shaping – a machining process where a single-point cutting tool moves linearly and piston wise, and a workpiece is fixed or moves only linearly concurrent with the tool.
  • Ein Schlitzfräser ist stirnseitig und am Umfang mit Wendeschneidplatten bestückt, für die simultane Bearbeitung von drei Flächen: Nutgrund und beide seitliche Schultern (3-seitig schneidend)
    Welches sind typische Schlitzfräsertypen?
  • Welches sind typische Schlitzfräsertypen?
    Schlitzfräser unterscheiden sich in der Aufnahmeart. Entweder verfügen sie über einen Aufnahmedorn bzw. eine Schaftaufnahme oder es handelt sich um auswechselbare Fräsköpfe für modulare Fräswerkzeugsysteme.
  • Welches ist ISCARs Werkzeugprogramm für Schlitzfräser?
    ISCAR hat Schlitzfräser für folgende Bereiche entwickelt:
  • Wann bezeichnet man eine Nut als eng?
    Die Bezeichnung “ enge Nut” definiert in der Regel eine tiefe Nut von geringer Breite. Eine etwas rigorosere, aber empirische Regel besagt, dass eine enge Nut eine Nutbreite unter 5 mm und eine Tiefe von mindestens 2.5xD aufweist.
    Wendelschaftfräser
  • Warum heißen diese Werkzeuge “Wendelschaftfräser”?
    Die Gesamtschneidenlänge eines Wendelschaftfräsers besteht insgesamt aus mehreren Fräswendeschneidplatten, die aufeinanderfolgend in einem Wendel im Fräser montiert sind. Im Vergleich zu einem regulären Wendeplattenfräser, dessen Schnitttiefe durch die Schneidkantenlänge begrenzt ist, ist die Schnitttiefe von Wendelschaftfräsern aufgrund dieser WSP-Bestückung wesentlich größer.
  • Gibt es noch andere Bezeichnungen außer Wendelschaftfräser?
    Für Wendelschaftfräser verwendet man manchmal umgangssprachlich die Bezeichnungen "Walzenstirnfräser" oder "Igelfräser".
  • Welches sind die Hauptanwendungen für Wendelschaftfräser?
    Wendelschaftfräser werden zum Schruppfräsen von hohen Schultern, tiefen Nuten oder Kavitäten eingesetzt. Die häufigste Anwendung ist das Besäumen mit einer Schnittbreite kleiner 30%.
  • Kann man Wendelschaftfräser auch zum Vorschlichten einsetzen?
    Ja. ISCARs HELITANG FIN LNK-Fräser mit tangential geklemmten, umfangsgeschliffenen Wendeschneidplatten wurden speziell für das Vorschlichten und zum Schlichten entwickelt.
  • Warum verfügen die meisten Fräswendeschneidplatten für Wendelschaftfräser über einen Spanteiler?
    Wendelschaftfräser sind unter hoher Beanspruchung im Einsatz. Die nachfolgend aufgeführten Faktoren verbessern die Zerspanleistung. Deshalb ist ein Spanteiler meist Teil der Schneidengeometrie eines Wendelschaftfräsers: Durch Spanteiler werden breite Späne in kleine Stücke geteilt, was den Spanfluss und die Spanevakuierung verbesssert. Die Spanteilergeometrie verbessert die Vibrationsdämpfung eines Fräsers. In den meisten Fällen reduziert ein Spanteiler die Schnittkräfte und die Leistungsaufnahme sowie die Wärmeentwicklung während des Fräsprozesses. Durch die kleinen Späne wird eine Schruppoperation tiefer Kavitäten enorm verbessert und die Standzeit verlängert.
  • Welche Werkzeugkonfigurationen gibt es bei ISCARs Wendelschaftfräsern?
    ISCARs Wendelschaft-Standardprogramm bietet: Aufsteckfräser Fräser mit Zylinderschaft oder Weldonschaft Fräser mit Steilkegelaufnahme (SK) oder Hohlschaftkegel (HSK) CAMFIX Hohlschaftkegel mit Polygonanschluss oder FLEXFIT-Schnittstelle (M-Gewinde)
  • Verfügen ISCARs Wendelschaftfräser über eine innere Kühlmittelzufuhr?
    Die meisten Wendelschaftfräser von ISCAR verfügen über eine innere Kühlmittelzufuhr durch den Fräskörper.
  • Empfiehlt ISCAR den Einsatz von Wendelschaftfräsern auch für die Bearbeitung von Titan?
    Ja. Beim Fräsen von Titan muss in der Regel viel Material abgetragen werden. Es handelt sich hierbei um Zerspanprozesse mit einer signifikanten Buy-To-Fly-Ratio. Wendelschaftfräser bieten in diesem Bereich einen großen Leistungsvorteil. Die Zykluszeiten werden durch den Einsatz dieser Werkzeuge deutlich verringert.
    Fräswerkzeuge für die Zahnradbearbeitung
  • Bietet ISCAR Werkzeuge für die Bearbeitung von Zahnrädern und Verzahnungen? BITTE ERGÄNZEN / DANKE
    ISCARs aktuelles Werkzeugprogramm für die Bearbeitung von Zahnrädern und Verzahnungen bietet 3 Fräsertypen: Fräser mit Wendeschneidplatten Fräser mit auswechselbaren Fräsköpfen, basierend auf dem T-SLOT-Konzept Fräser mit auswechselbaren Fräsköpfen und MULTI-MASTER-Schnittstelle
  • Für welches Verfahren der Zahnradbearbeitung sind ISCARs Fräswerkzeuge ausgelegt?
    Aktuell produziert ISCAR für die Zahnradbearbeitung generate durch Formfräsen.
  • Was bedeutet "Formfräsen" im Zusammenhang mit Zahnradbearbeitung?
    Formfräsen ist eines der Verfahren zur Herstellung von Zahnprofilen. Beim Formfräsen bearbeitet der Fräser mit einem zahnradähnlichen Profil jeden Zahn einzeln; and a workpiece is indexed through a pitch after generating one space. BITTE ERGÄNZEN / DANKE
  • Gibt es außer Formfräsen andere Verfahren zur Erzeugung von Zahnprofilen?
    Die prinzipielle Methode (abgesehen vom Formfräsen) ist gear hobbing, which uses a hob, a cutter with a set of teeth along a helix that mills the workpiece and that rotates together with the workpiece in a similar way to a worm-wheel drive; gear shaping with the use of a gear-shaping cutter, a rotating tool that visually resembles a mill; and by power skiving - a technique that combines gear milling and gear shaping. Es gibt außerdem noch weitere Methoden zur Erzeugung von Zahnprofilen, wie z. B. Räumen, Schleifen, Walzen. BITTE ERGÄNZEN / DANKE
  • Ist die Erzeugung des Zahnprofils die letzte Bearbeitung in einem Zahnradbearbeitungsprozess?
    Die Erzeugung des Zahnprofils ist im allgemeinen nicht der letzte Arbeitsgang. Es müssen Grate entfernt werden, und die scharfen Kanten der Zähne müssen verrundet oder angefast werden. Das Verrunden oder Anfasen ist erforderlich, to avoid quenching gears with sharp edges, was Mikroausbrüche verursachen und die Lebensdauer des Zahnrads reduzieren kann. Beim Fräsen von Zähnen sind lediglich Parameter möglich, die in einer geringen Zahnradpräzision resultieren. Da die Herstellung präziser Zahnräder eine höhere Präzision und Oberflächengüte verlangt, werden auch andere Verfahren wie Zahnrad-Schaben, Verzahnungs-Schleifen,Verzahnungs-Honen usw. angewendet. BITTE ERGÄNZEN / DANKE
  • In der Regel wird Formfräsen in der Zahnradbearbeitung nur bei kleinen Losgrößen eingesetzt. Warum beinhaltet das Standardprogramm Herstellern, einschließlich ISCAR, Formfräser für die Zahnradbearbeitung?
    In der Produktion von Losgrößen erfolgt die Fräsbearbeitung von Zahnrädern auf speziellen Wälzfräsmaschinen, da die Produktivität dabei wesentlich höher ist. Innovative Multifunktionsmaschinen erweitern jedoch den Anwendungsbereich. Technologische Prozesse, die für diese Maschinen entwickelt wurden, orientieren sich an der Maximierung des Bearbeitungsprozesses durch One Setup-Fertigung. Daraus ergibt sich ein neuer Weg für eine präzisere und produktivere Fertigung. Das Fräsen von Zahnrädern und Verzahnungen ist prädestiniert für diese neuen Maschinen. Diese neuen Maschinen benötigen entsprechende Werkzeug, und Hersteller von Werkzeugen für allgemeine Bearbeitungen erkennen deshalb die Rolle von Fräsern für die Zahnradbearbeitung innerhalb ihres Standardprogramms.
  • What is the module in gearing? BITTE ERGÄNZEN / DANKE
    The module (modulus) is one of the main basic parameters of a gear in metric system. Die Messung erfolgt in mm. The module m eines Zahnrads mit Steigungsdurchmesser d und Anzahl der Zähne z stellt das Verhältnis des Steigungsdurchmessers zur Anzahl der Zähne(d/z) dar. BITTE ERGÄNZEN / DANKE
  • Verwendet das Zollsystem bei Zahnrädern ebenfalls the module als Basisparameter? BITTE ERGÄNZEN / DANKE
    Das Zollsystem benutzt einen weiteren Basisparameter: die diametrale Steigung. Dies ist die Anzahl der Zähne des Zahnrads pro 1 Zoll des Steigungsdurchmessers. Hat ein Zahnrad N Zähne und it einen Steigungsdurchmesser D (in Zoll), berechnet sich die diametrale Steigung P als N/D. Bei der Bestimmung von Zahnrädern in Zolleinheiten wird manchmal das sogenannte englische Modul angewendet. Im Prinzip bedeutet dieses Modul dasselbe wie das metrische System, d. h. das Verhältnis des Steigungsdurchmessers zur Anzahl der Zähne; Der Steigungsdurchmesser sollte jedoch in Zoll abgenommen werden, nicht in mm, wie dies im metrischen System der Fall ist.
  • Wie definiert sich der Unterschied zwischen Zahnrad und Verzahnung?
    Zahnräder ion einem Rädergetriebe dienen zur Übertragung einer Drehbewegung zwischen 2 Wellen (wobei die Achsen der Wellen nicht immer parallel verlaufen) und, in den meisten Fällen, ist diese Übertragung komnbiniert mit wechselndem Drehmoment und wechselnder Drehzahl. Die Zahnräder werden auch zur Umwandlung einer Rotationsbewegung in eine lineare Bewegung eingesetzt. A splined joint is a demounted connection of two parts to transfer the torque from one to another. Das Drehmoment ist hier unverändert. BITTE ERGÄNZEN / DANKE ( HILFE HILFE ;-) )
  • Was ist der Unterschied zwischen Verzahnung und Kerbverzahnung? IST DAS KORREKT??
    In diesem Zusammenhang stellen Kerbverzahnungen einen bestimmten Verzahnungstyp dar. Kerbverzahnung haben einen V-förmigen Abstand zwischen den Zähnen. Man findet sie in der Regel in kleinen Verbindungen.
    Einstechen
  • Was ist die erste Wahl für das Einstechen in der Schwerzerspanung?
    Zum Einstechen nur den DOVEIQGRIP TIGER-Schneideinsatz in den Schneidenbreiten 10 - 20 verwenden. Zum Stechdrehen verwendet man den Schneideinsatz SUMO-GRIP TAGB, verfügbar in den Schneidenbreiten 6 - 14 mm.
  • Welcher Spanformer eignet sich am besten für zähe Werkstückstoffe?
    Verwenden Sie den N-Spanformer. Dieser ist verfügbar in den Breiten 3 - 8 mm für GIMN-Schneideinsätze zur Außenbearbeitung sowie in den Breiten 2 -5 mm für GEMI/GINI-Schneideinsätze zur Innenbearbeitung.
  • Welche Schneidstoffsorten werden für die Bearbietung von ISO-M- / ISO-P-Werkstückstoffen empfohlen?
    Die erste Wahl für viele Anwendungen ist IC808; Wird eine härtere, verschleißfestere Sorte benötigt, verwendet man IC807; Benötigt man eine zähere, Sorte (unterbrochene Schnitte), empfehlen wir IC830.
  • Welche Schneidstoffsorte eignet sich am besten für die Bearbeitung von ISO-S-Werkstückstoffen (hoch hitzebeständige Legierungen)?
    Erste Wahl ist IC806 für die Bearbeitung hoch hitzebeständiger Legierungen. Für härtere ISO-S-Werkstückstoffe (HRC35) verwendet man IC804.
  • Welche Werkzeughalter zum Einstechen setzt man auf Langdrehautomaten ein?
    Verwenden Sie GEHSR/GHSR-Halter mit Klemmmechanismus von der Seite, was für den Einsatz auf Langdrehautomaten im Gegensatz zu herkömmlicher Klemmung von oben vorteilhaft ist.
  • Welche Schneidstoffsorten / Geometrien werden zum Einstechen / Stechdrehen von Gusseisen empfohlen?
    Verwenden Sie die Schneideinsätze GIPA/GIDA/FSPA. Diese verfügen über eine sehr scharfe, positive Schneidkante sowie eine geschliffene Spanfläche, in Kombination mit den Schneidstoffsorten IC20 oder ID5 PKD; Für Stechbreiten 6 – 8 mm sind runde FSPA-Schneideinsätze die beste Wahl, aufgrund ihres speziellen Klemmsystems.
  • Welche Schneidstoffsorten /Geometrien werden zum Einstechen / Stechdrehen von Aluminium empfohlen?
    &amp;lt;ul&amp;gt; &amp;lt;li&amp;gt;Verwenden Sie die Schneideinsätze GIPA/GIDA/FSPA. Diese verfügen über eine sehr scharfe, positive Schneidkante sowie eine geschliffene Spanfläche, in Kombination mit den Schneidstoffsorten IC20 oder ID5 PCD&amp;lt;/li&amp;gt; &amp;lt;li&amp;gt;Für Stechbreiten 6 – 8 mm sind runde FSPA-Schneideinsätze die beste Wahl, aufgrund Ihres speziellen Klemmsystems&amp;lt;/li&amp;gt; &amp;lt;/ul&amp;gt;
  • Welche Werkzeuge / Schneideinsätze eignen sich am besten zum Inneneinstechen in Bohrungen mit kleinem Durchmesser?
    Bohrungsdurchmesser 2 – 10 mm: Verwenden Sie PICCO-Schneideinsätze in PICCO ACE-Werkzeugen; Bohrungsdurchmesser: 8 – 20; Verwenden Sie GIQR-Schneideinsätze in MGCH-Werkzeugen; Bohrungsdurchmesser 12 – 25 mm: Verwenden Sie GEMI/GEPI-Schneideinsätze in GEHIR-Werkzeugen.
  • Wie können Vibrationen reduziert werden?
    Verwenden Sie die kleinstmögliche Auskraglänge; Bearbeiten Sie mit konstanter Drehzahl; Reduzieren Sie die Drehzahl falls nötig; Reduzieren Sie die Schneidenbreite, um die Schnittkraft zu reduzieren. Für die Breiten 6 und 8 mm verwenden Sie WHISPERLINE Anti-Vibrations-Schneidenträger.
  • In welchen Fällen werden JETCUT-Werkzeuge mit zielgerichteter Kühlmittelzuführung empfohlen?
    JETCUT-Werkzeuge eignen sich für alle Kühlmitteldrücke (10 – 340 bar) und alle Anwendungen, da sie das Kühlmittel effizient direkt zur Schneidkante befördern. Dies führt zu längeren Standzeiten und besserer Spankontrolle.
    Abstechen
  • Was ist ISCARs erste Wahl in punkto Werkzeugen zum ABSTECHEN?
    • Für allgemeine Anwendungen bis zum Bauteildurchmesser 38mm verwenden Sie doppelseitige DO-GRIP-Schneideinsätze
    • Über 38mm: Verwenden Sie einseitige TANG GRIP-Schneideinsätze–
    • Bis zu Durchmesser 40mm: Verwenden Sie PENTA IQ , dies ist ein äußerst wirtschaftlicher Schneideinsatz mit 5 Schneidkanten
  • Welche Schneidstoffsorte ist die beste Option für die Bearbeitung von Stahl(ISO P)?
    • C830
  • Welche Schneidengeometrie / welcher Spanformer ist erste Wahl für die Bearbeitung von Stahl? 
    • Verwenden Sie die "C" Geometrie, z. B. DGN 3102C
    Welches ist die am besten geeignete Schneidengeometrie / der am besten geeignete Spanformer für die Bearbeitung von rostbeständigem Stahl?
    • Verwenden Sie die "LF" Geometrie, z. B. DGN 3102LF
  • Welche Werkzeuge und Schneideinsätze empfehlen Sie für die Bearbeitung von Miniaturbauteilen?
    • Erste Wahl ist ISCAR DO-GRIP (doppelseitige Schneideinsätze) mit positiver Schneidengeometrie, z. B. DGN 3102J & DGN 3000P
      * Verwenden Sie Werkzeuge mit kurzen Abmessungen, z. B. DGTR 12B-1.4D24SH
    • Zweite Wahl ist ISCAR PENTA CUT, ein wirtschaftlicher Schneideinsatz mit 5 Schneidkanten, z. B. :
      * PENTA 24N200J020 IC1008 (Schneideinsatz)
      * PCHR 12-24 (Werkzeug)
  • Welches Werkzeug eignet sich am besten für Bearbeitungen in der Schwerzerspanung?
    • Verwenden Sie ISCAR TANG GRIP (einseitig) Schneideinsätze. Wählen sie die Breite gemäß dem Bauteildurchmesser
    • Für Bearbeitungen in der Schwerzerspanung bietet ISCAR Schneidenbreiten 5-12.7mm
    • IC830 ist die empfohlene Schneidstoffsorte
    • Empfohlene/r Schneidengeometrie / Spanformer ist "C"
  • Wie reduziert man die Gratbildung am Bauteil?
    • Verwenden Sie R oder L Schneideinsätze - diese Schneideinsätze haben einen Anstellwinkel, so dass die Schneidkante nicht gerade ist
    • Verwenden Sie außerdem einen positiven Spanwinkel, z. B. : DGR -3102J-6D (6D =6 Grad Anstellwinkel)
    • beim letzten Einstich wird empfohlen, den Vorschub um 50% zu reduzieren
  • Wie erreicht man eine längere Standzeit der Schneideinsätze?
    Analysieren Sie die Fehlerursache und wählen Sie entsprechend eine Schneidstoffsorte:
    Verschleiß: Verwenden Sie eine härtere Schneidstoffsorte, z. B. IC808 oder 807
    Bruch: Verwenden Sie eine zähere Schneidstoffsorte wie z. B. IC830
  • Welcher Schneideinsatz eignet sich am besten für   unterbrochenen Schniשt?
    Verwenden Sie einen negativen Spanwinkel, den "C"-Spanformer sowie die Schneidstoffsorte IC830.
  • Wie verbessert man die Spankontrolle, wenn die Späne zu lang sind?
    • Wählen Sie den geeigneten Spanformer sowie die korrekten Schnittparameter, um einen guten Spanbruch zu erzeugen
    • Wählen Sie einen aggressiveren Spanformer, z. B. UA oder UT
    • Hinweise zur Vorschuberhöhung finden Sie im ISCAR User Guide
  • Wie verbessert man die Geradheit und Oberflächengüte des zu bearbeitenden Bauteils?
    • Verwenden Sie einen neutralen Schneideinsatz sowie ein stabiles Werkzeug mit der kleinst möglichen Auskraglänge
    • Passen Sie die Schnittparameter an
    Drilling
  • Welche Durchflussrate wird für SUMOCHAM empfohlen?
    Dies ist abhängig vom Durchmesser. Beispielsweise ist die Mindestdurchflussrate für 6 mm SUMOCHAM 5 l/min. Für 20 mm beträgt die Mindestdurchflussrate 18 l/min. Für 20 mm beträgt die Mindestdurchflussrate 18 l/min. Weitere Informationen finden Sie im SUMOCHAM User Guide in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 491.
  • Welcher Kühlmitteldruck wird für SUMOCHAM empfohlen?
    Dies hängt vom Durchmesser und von der Werkzeuglänge ab. Beispielsweise beträgt der Mindest-Kühlmitteldruck für 6 mm SUMOCHAM 12 bar auf 8xD. Für 25 mm SUMOCHAM auf 12xD beträgt der erforderliche Mindest-Kühlmitteldruck 4.5 bar. Weitere Informationen finden Sie im SUMOCHAM User Guide in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 491.
  • Welche Werkstück-Geradheit kann mit der SUMOCHAM-Linie erzeugt werden?
    In einer stabilen Aufspannung kann die Abweichung von 0.03 mm bis 0.05 mm pro 100 mm Bohrtiefe betragen. Wichtig: Die erzeugten Ergebnisse können variieren, abhängig von Maschine, Klemmung, Werkzeugaufnahme usw.
  • Wie ist der korrekte Tiefbohrzyklus bei Verwendung einer Pilotbohrung und darauffolgendem Werkzeug?
    Um Fehler zu vermeiden, sollte die Pilotbohrung mit derselben Geometrie durchgeführt werden, die man für die nachfolgende Tiefbohroperation vorgesehen hat. Ausführliche Erläuterungen hierzu finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 492.
  • Kann man mit SUMOCHAM auch eine Aufbohroperation durchführen? 
    Nein, die SUMOCHAM-Linie wurde nicht für Aufbohroperationen entwickelt. Dies könnte zur Beschädigung von Werkzeug und Wechselköpfen führen.
  • Welche Geometrie wird für die Bearbeitung von Titan empfohlen? 
    Erste Wahl ist ICP/ICM, zweite Wahl ist ICG.
  • Kann man SUMOCHAM-Bohrköpfe nachschleifen? 
    Ja, die Geometrien ICP/ICK/ICM/ICN/ICH und FCP können je nach Durchmesser bis zu 3 mal nachgeschliffen werden. Detaillierte Erläuterungen hierzu finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge auf den Seiten 502-504.  Hinweis: Die Geometrie HCP kann nur in unserem Stammhaus in Israel nachgeschliffen werden. 
  • Was ist der maximal zulässige Rundlauffehler für SUMOCHAM? 
    Um eine bestmögliche Werkzeugleistung und Standzeit zu erzielen, sollte der radiale und axiale Rundlauffehler 0.02 mm nicht übersteigen. Einen ausführlichen User Guide finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge ab Seite 490. 
  • Kann man SUMOCHAM für unterbrochene Schnitte einsetzen? 
    SUMOCHAM eignet sich nicht für unterbrochene Schnitte. In diesem Fall kann die Klemmkraft des Werkzeugs zu schwach sein, so dass sich die Wendeschneidplatten aus dem Plattensitz lösen. 
  • Welche Werkzeuglösung empfiehlt ISCAR für die Bearbeitung harter Werkstückstoffe? 
    Für die Bearbeitung harter Werkstückstoffe empfehlen wir die VHM-Bohrer SCD-AH in der Schneidstoffsorte IC903 oder eine Semistandardoption aus der SUMOCHAM-Linie, die ICH-Bohrköpfe.  
  • Welcher Aufnahmetyp wird empfohlen? 
    Grundsätzlich wird die Aufnahme empfohlen, die am besten zum Werkzeugschaft passt. Wenn der Schaft rund ist, eignet sich am besten eine HYDRO-Aufnahme. Weitere Informationen finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge ab Seite 829. 
  • In wieweit darf man eine mit SUMOCHAM Bohrköpfen hergestellte Durchgangsbohrung mit dem Bohrkopf überfahren? 
    Der maximale Überstand gemessen von der Flanke des Spitzenwinkels sollte max. 2-3 mm betragen, so kann gewährleistet werden dass das Werkzeug durch die Führungsfasen noch radial geführt wird. 
  • Welche Werkzeuglösung wird für die Bearbeitung von Aluminium empfohlen? 
    Dies hängt von der Anwendung ab. Die SUMOCHAM-Linie bietet ICN-Wendeschneidplatten, die speziell für das Bohren von Nichteisen-Werkstückstoffen entwickelt wurden. 
  • An welchen Merkmalen kann man erkennen, wann ein SUMOCHAM-Bohrkopf verschlissen ist? 
    Die beste Methode ist, den Bohrkopf mikroskopisch zu vermessen. Weitere Verschleißindikatoren finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 493. 
  • Which hole is considered as "short" and which as "deep"?
    Commonly used terms “short” and “deep” holes do not have a strict definition. It is widely accepted that drilling a hole of diameter d and (10…12)×d or higher in depth relates to deep drilling, while holes having depth up to 5×d, are short.
    In the terminology used by ISCAR, only a drilling depth of 12×d and higher is considered as deep. Consequently, the holes with shallower depths are short.
  • What is a cutting length series of drills?
    The drills vary in their cutting length. In general, tool manufacturers normalize the drills by cutting length series (short, regular, etc.), according to the ratio "cutting length/drill diameter". At ISCAR, drills intended for machining short holes are usually divided into the following length series: short (up to 3×d), long (4×d and 5×d) and extra-long (8×d and 12×d).
  • Why is a center drill referred to as a "countersink" and even as a "spot drill"?
    A center drill is needed for forming a conical hole in workpieces. This hole is used for supporting the workpieces by the centers of machine tools. One of the methods for forming conical holes is countersinking - machining by a specially designed cutter, a countersink. In fact, the center drill performs a combination of two operations simultaneously: drilling and countersinking. Therefore, the center drill is often referenced as a “combined countersink”. Sometimes, a center drill is considered a spot drill; however this specification is not strictly correct. A spot drill only drills but a center drill performs two operations: drilling and countersinking, therefore “spot a hole” and “drill a center hole” are not the same.
  • In center drilling, does a Multi-Master replaceable solid carbide head offer a real alternative to reversible high-speed steel (HSS) drill bits?
    Reversible HSS center drill bits are the most popular tools for center drilling: they are simple, always available for purchase, and feature low prices. The Multi-Master replaceable solid carbide head enables significant increases in cutting speed and feed, resulting in higher productivity and reduced machining costs, especially in cases of machining difficult-to-cut material. In addition, the tool life of the head is much longer. A brief economical calculation will show the preferred alternative for each case.
  • Is a chip-splitting cutting geometry suitable for drills of a relatively small diameter?
    A chip-splitting cutting geometry may be used in drilling tools. There are different drill cutting edge designs with chip splitting grooves, for example the SUMOCHAM ICG heads. Splitting chips into small segments improves chip evacuation and cutting speed. Under the same cutting conditions, a straight-style edge ensures better surface finish. Therefore, chip-splitting geometry is suitable mainly for rough drilling operations.
  • What are the advantages of the concave, pagoda-shape, cutting edges of SUMOCHAMIQ exchangeable drilling heads?
    The shape of the cutting edge substantially enhances the self-centering capability of the drill and enables drilling holes of depths up to 12×d directly into solid material, without pre-drilling a pilot hole. In addition, the HCP geometry facilitates gradual penetration into machined material which reduces the cutting forces, obtaining better hole quality – particularly when the drilling depth is significant.
    Reiben
  • Unter welchen Voraussetzungen ist eine Reibbearbeitung erforderlich?
    Wenn die Qualität einer Bohrung verbessert werden muss (präzisere Form- und Lagetoleranzen und hohe Oberflächengüten).
  • Für welchen Tolerenzbereich eignen sich Standard-Reibahlen?
    ISCARs Standard-Reibahlen eignen sich für den Toleranzbereich IT7.
  • Können mit Standard-Reibahlen alle Werkstückstoffe bearbeitet werden?
    Standard-Reibahlen eignen sich für einen Großteil der Werkstückstoffe, in punkto Bearbeitung der Werkstückstoffgruppen ISO N und ISO S sollte jedoch ein ISCAR-Techniker konsultiert werden. 
  • Wie ist die durchschnittiche Standzeit einer Reibahle? 
    Da die Standzeit durch unterschiedliche Faktoren beeinflusst wird (Werkstückstoff, Kühlung, Toleranz, Rundlauffehler usw.), kann keine allgemein gültige Aussage getroffen werden. Jeder Anwendungsfall sollte individuell analysiert werden.
  • Kann man eine Reiboperation ohne Kühlung durchführen?
    Nein. Reiben kann ohne Kühlung nicht durchgeführt werden. Optimalerweise setzt man innere Kühlmittelzufuhr ein. Externe Kühlung ist beim Reiben jedoch auch eine Option.
  • Welches Aufmaß benötigt man vor dem Reiben?
    Das empfohlene Aufmaß hängt vom zu bearbeitenden Wersktückstoff, dem Reibdurchmesser und dem eingesetzten Werkzeug ab. Generell kann dies zwischen 0.15 und 0.4 mm pro Durchmesser betragen.
  • Was ist der höchst zulässige Rundlauffehler beim Reiben?
    Generell ist der höchst zulässige Rundlauffehler beim Reiben max. 0.01 mm. Sollte der Rundlauffehler diesen Wert übersteigen, dann ist eine verstellbare Aufnahme oder eine Optimierung der Spindel empfehlenswert.
    ISO
  • Wie kann die Produktivität bei der Bearbeitung von Superlegierungen und Nickelbasislegierungen mit ISCARs Keramik-Schneidstoffsorten erhöht werden? 
    ISCAR bietet ein breites Spektrum an Keramik-Schneidstoffsorten, z. B. IW7 für die Bearbeitung von Superlegierungen und Nickelbasislegierungen. <BR/> Im Vergleich zu herkömmlichen Hartmetall-Wendeschneidplatten ermöglichen diese Schneidstoffsorten 10mal schnellere Schnittgeschwindigkeiten von 150 m/min bis zu 450 m/min und dadurch eine sehr viel höhere Produktivität. 
  • Welche Spanformer empfiehlt ISCAR als erste Wahl für die Bearbeitung von Stahl? 
    ISCAR hat 3 neue Spanformertypen im Programm, zum Schlichten, Schruppen und für die mittlere Bearbeitung von Stahl: F3P, M3P und R3P.  <br/> Diese Spanformer in Kombination mit ISCARs SUMO TEC-Schneidstoffsorten ermöglichen Produktivitätssteigerungen, Standzeitverlängerung, bessere Werkstückqualität und eine höhere Prozesssicherheit. Des Weiteren erzeugen sie eine geringere Temperatur, so dass Spanaufschweißungen vermieden werden. Auch der Spanbruch wird verbessert (kleine, kurze Späne).  
  • Wie verbessert man die Spankontrolle bei der Bearbeitung mit CBN-Wendeschneidplatten? 
    CBN-Wendeschneidplatten werden hauptsächlich für die Bearbeitung harter Werkstückstoffe von 55 bis 62 HRC eingesetzt. Herkömmliche CBN-Wendeschneidplatten bieten ein großes Spektrum an aufgelöteten Schneiden, die beim Drehen von hartem Stahl lange, gelockte Späne erzeugen und die Oberflächenqualität des Werkstücks beschädigen.  ISCARs neue CBN-Wendeschneidplatte mit einem geschliffenen Spanformer an der Schneidkante liefert eine hervorragende Spankontrolle bei mittleren Bearbeitungen und beim Schlichten und erzeugt eine hohe Oberflächengüte. 
  • How to reduce vibrations on a boring bar with a high overhang of more than 4xBD?
    Throughout the world, machinists have to deal with the presence of problematic vibrations on a daily basis. To help solve these difficulties, ISCAR’s Research and Development division has produced an anti-vibration boring bar which contains the dampening mechanism inside the body. This reduces and even eliminates vibrations when using boring bars with a high overhang. The new anti-vibration line is called WHISPERLINE.
  • Wie erreicht man eine Produktivitätssteigerung bei der Bearbeitung von Grauguss mit ISCARs Keramik-Schneidstoffsorten? 
    Grauguss ist in der Automobilindustrie der am meisten bearbeitete Werkstückstoff. Für die Bearbeitung dieses Werkstückstoffs bietet ISCAR ein umfassendes Sortiment an Keramik-Schneidstoffsorten wie z. B. IS6 SiAlON-Schneideinsätze. <br/> Die Schneidstoffsorte IS6 wurde entwickelt, um die Produktivität bei der Bearbeitung von Grauguss zu erhöhen. Der entscheidende Vorteil von IS6 SiAlON Schneidstoffsorten ist, dass im Vergleich zu allen herkömmlichen Hartmetallwendeschneidplatten drei bis viermal höhere Schnittgeschwindigkeiten möglich sind, von 400 m/min bis zu 1200 m/min. Dadurch sind enorme Produktivitätssteigerungen erreichbar. 
  • Welchen Spanformer empfiehlt ISCAR als erste Wahl für die Bearbeitung von rostbeständigem Stahl? 
    ISCAR hat 3 neue Spanformertypen entwickelt: F3M, M3M und R3M zum Schlichten, Schruppen und für mittlere Bearbeitungen von rostbeständigem Stahl. In Kombination mit den SUMOTEC-Schneidstoffsorten erreicht man eine höhere Produktivität, längere Standzeiten und eine höhere Prozesssicherheit.  <br/> Der Spanformer F3M hat positive Spanwinkel für einen weichen Schnitt sowie eine Reduzierung von Schnittkräften und Verschleiß. Dies führt zu erheblich längeren Standzeiten.  <br/> Der Spanformer M3M mit verstärkter Schneidkante und positivem Spanwinkel für die Bearbeitung von rostbeständigem Stahl sorgt für einen weichen Schnitt und reduziert die Schnittkräfte. <br/> Der Spanformer R3M mit verstärkter Schneidkante und positivem Spanwinkel reduziert die Schnittkräfte und wurde zum Schruppen von rostbeständigem Stahl entwickelt. 
  • Wie wirkt sich Hochdruckkühlung aus? 
    Der entscheidende Vorteil von JETCUT Werkzeugen ist die zielgerichtete und somit effiziente Kühlmittelzuführung direkt zu den Schneidkanten. Dies verbessert die Spankontrolle, reduziert die Wärmeentwicklung und verlängert die Standzeit.  <br/> Vor allem bei der Bearbeitung zäher Werkstückstoffe wie Superlegierungen, rostbeständigem Stahl, Titan usw. kommt der Effekt der Hochdruckkühlung deutlich zum Tragen.; 
    Keramik-Schneidstoffsorten und Schneideinsätze
  • Wie erreicht man eine Produktivitätssteigerung bei der Bearbeitung von Nickelbasislegierungen und weiteren Superlegierungen mit ISCARs Keramik-Schneidstoffsorten?
    ISCAR bietet eine große Auswahl an Keramik-Schneidstoffsorten, z. B. IW7, für die Bearbeitung von Nickelbasislegierungen und sonstigen Superlegierungen. Im Vergleich zu allen herkömmlichen Hartmetall-Wendeschneidplatten ermöglichen ISCARs Keramik-Wendeschneidplatten 10 mal höhere Schnittgeschwindigkeiten von 150 m/min bis zu 450 m/min. Dadurch sind enorme Produktivitätssteigerungen erreichbar. 
  • Welche Spanformer empfiehlt ISCAR für die Bearbeitung von Stahl?
    ISCAR hat zum Schlichten, für mittlere Bearbeitungen und zum Schruppen 3 neue Spanformertypen entwickelt: F3P, M3P und R3P.  In Kombination mit ISCARs SUMO TEC-Schneidstoffsorten erzielt man damit eine höhere Produktivität, längere Standzeiten, bessere Oberflächengüten und höhere Prozesssicherheit. Diese Spanformer erzeugen weniger Wärme, was Spanaufschweißungen verhindert. Es werden kurze, kleine Späne erzeugt, was zu einem höheren Zeitspanvolumen führt.  
  • Wie verbessert man die Spankontrolle mit CBN-Wendeschneidplatten?
    CBN-Wendeschneidplatten wurden hauptsächlich für die Bearbeitung harter Werkstückstoffe von 55 bis zu 62 HRC entwickelt. Herkömmliche CBN-Wendeschneidplatten mit aufgelöteten Schneiden erzeugen lange, gelockte Späne bei Drehoperationen von hartem Stahl und beeinträchtigen die Oberflächengüte des Werkstücks. Die neuen CBN-Wendeschneidplatten von ISCAR verfügen über einen geschliffenen Spanformer, was eine ausgezeichnete Spankontrolle und Oberflächenqualität bei mittleren Bearbeitungen und auch bei Schlichtbearbeitungen ermöglicht. 
  • Wie kann man bei der Bearbeitung mit einer Bohrstange mit einer Auskraglänge über 4xD Vibrationen reduzieren? 
    Zur Reduzierung von Vibrationen hat ISCAR eine Anti-Vibrationsbohrstange entwickelt. Der Mechanismus zur Vibrationsdämpfung befindet sich im Inneren der Bohrstange. Dieser reduziert bzw. eliminiert sogar Vibrationen beim Einsatz von Bohrstangen mit großer Auskraglänge (10xD). Diese neue Antivibrationslinie ist ISCARs WHISPERLINE. 
  • Wie erreicht man eine Produktivitätssteigerung bei der Bearbeitung von Grauguss mit ISCARs Keramik-Schneidstoffsorten? 
    Grauguss ist in der Automobilindustrie der am meisten bearbeitete Werkstückstoff. Für die Bearbeitung dieses Werkstückstoffs bietet ISCAR ein umfassendes Sortiment an Keramik-Schneidstoffsorten wie z. B. IS6 SiAlON. <br/> Die Schneidstoffsorte IS6 wurde entwickelt, um die Produktivität bei der Bearbeitung von Grauguss zu erhöhen. Der entscheidende Vorteil von IS6 SiAlON Schneidstoffsorten ist, dass im Vergleich zu allen herkömmlichen Hartmetallwendeschneidplatten drei bis viermal höhere Schnittgeschwindigkeiten möglich sind, von 400 m/min bis zu 1200 m/min. Dadurch erreicht der Anwender enorme Produktivitätssteigerungen. 
  • Welchen Spanformer empfiehlt ISCAR als erste Wahl für die Bearbeitung von rostbeständigem Stahl? 
    ISCAR hat 3 neue Spanformertypen entwickelt: F3M, M3M und R3M zum Schlichten, Schruppen und für mittlere Bearbeitungen von rostbeständigem Stahl. In Kombination mit den SUMOTEC-Schneidstoffsorten erreicht man eine höhere Produktivität, längere Standzeiten und eine höhere Prozesssicherheit.  <br/> Der Spanformer F3M hat positive Spanwinkel für einen weichen Schnitt und reduziert die Schnittkräfte und den Verschleiß. Dies führt zu erheblich längeren Standzeiten.  <br/> Der Spanformer M3M mit verstärkter Schneidkante und positivem Spanwinkel für die Bearbeitung von rostbeständigem Stahl sorgt für einen weichen Schnitt und reduziert die Schnittkräfte. <br/> Der Spanformer R3M mit verstärkter Schneidkante und positivem Spanwinkel reduziert die Schnittkräfte und wurde zum Schruppen von rostbeständigem Stahl entwickelt. 
  • Wie wirkt sich Hochdruckkühlung aus?
    Der entscheidende Vorteil von JETCUT Werkzeugen ist die zielgerichtete und somit effiziente Kühlmittelzuführung direkt zu den Schneidkanten. Dies verbessert die Spankontrolle, reduziert die Wärmeentwicklung und verlängert die Standzeit.  <br/> Vor allem bei der Bearbeitung zäher Werkstückstoffe wie Superlegierungen, rostbeständigem Stahl, Titan usw. kommt der Effekt der Hochdruckkühlung deutlich zum Tragen; 
    Gewindedrehen
  • Welche Schneidstoffsorte eignet sich am besten für die Bearbeitung von rostbeständigem Stahl? 
    IC1007 
  • Welche Schneidstoffsorte eignet sich am besten für die Bearbeitung von hoch hitzebeständigen Legierungen? 
    IC806 
  • Welche Schneidstoffsorte eignet sich am besten für niedrige Schnittgeschwindigkeiten und labile Maschinenbedingungen?  
    IC228 
  • Wie groß ist die empfohlene Mindestzustellung beim Gewindestrehlen?  
    Größer als die Kantenverrundung. 
  • Warum hat der Spanformer keinen Effekt? 
    Die Schnitttiefe ist zu gering, so dass der Spanformer ineffizient ist 
  • Wie verbessert man die Spankontrolle? 
    Die Spankontrolle kann verbessert werden durch die Auswahl einer geeigneten Zustellmethode (einseitige Zustellung, radiale Zustellung, wechselseitige Zustellung): <ul> <li>Radial infeed</li> <li>Flank infeed</li> <li>Alternating flank infeed</li> </ul> ?????
  • Wie kann die Prozesszeit verkürzt werden? 
    Verwenden Sie mehrschneidige Gewinde-Drehwendeschneidplatten (2M, 3M)<br/> zwei oder drei Schneiden ermöglichen weniger Schnitte und eine kürzere Bearbeitungszeit. Für die meisten Gewindeprofile und Steigungen sind diese Wendeschneidplatten verfügbar und eine gute Wahl für wirtschaftliches Gewindedrehen in der Massenfertigung. 
  • Erklären Sie den Unterschied zwischen einer Teilprofil- und einer Vollprofil-Wendeschneidplatte!  
    Teilprofil:
    • Zur Bearbeitung unterschiedlicher Gewindestandards, geeignet für ein großes Steigungsspektrum mit dem gleichen Winkel(60º oder 55º)
    • Die Wendeschneidplatte verfügt über einen kleinen Eckenradius, welcher auch für die kleinsten Steigungsbereiche geeignet ist
    • Weitere Bearbeitungen zur Fertigung des Außen- und Innendurchmessers sind erforderlich
    • Nicht empfohlen für die Massenfertigung
    • Man benötigt keine unterschiedlichen Wendeschneidplatten
    Vollprofil:
    • Erzeugt das komplette Gewindeprofil
    • Nur ein Eckenradius, welcher
    • ausgelegt ist für die entsprechende Steigung
    • Für die Massenfertigung
    • Nur für ein einziges Profil geeignet
  • Wie wählt man die geeigneten Unterlegplatten aus? 
    Positive Unterlegplatten werden bei RH-Gewinden mit RH-Haltern oder LH-Gewinden mit LH-Haltern eingesetzt. Negative Unterlegplatten werden für die Kombination LH-Gewinde mit RH-Halter oder RH-Gewinde mit LH-Halter. Für EX-RH und IN-LH werden AE-Unterlegplatten verwendet und für IN-RH und EX-LH AL-Unterlegplatten.<br/>
    Schneidstoffsorten
  • Was versteht man unter Schneidstoff
    In Zerspanungswerkzeugen besteht der schneidende Teil des Werkzeugs aus dem sogenannten Schneidstoff.
  • Wie klassifiziert ISCAR die Schneidstoffsorten?
    Der international gültige Standard ISO 513 klassifiziert Schneidstoffsorten, basierend auf der Anwendbarkeit ihrer Bestandteile. ISCAR hat diesen Standard übernommen und richtet sich bei der Werkzeugentwicklung nach diesen Vorgaben. Hartmetalle weisen eine äußerst hohe Härte auf und können daher die meisten Werkstückstoffe, die weicher sind, zerspanen. Einige Hartmetallsorten sind jedoch für die Bearbeitung bestimmter Werkstoffklassen besser geeignet als wiederum andere.
  • Was ist ein Hartmetall?
    Hartmetalle sind Schneidstoffe, bestehend aus der Kombination von Hartmetall-Substrat, Beschichtung und spezieller Nachbehandlung. Allerdings ist lediglich das Hartmetall-Substrat zwingend für einen Schneidstoff erforderlich, die anderen Bestandteile sind optional. Das Hartmetall-Substrat besteht aus Karbidpulver(meist Wolframkarbid WC) in Granulatform und einem Bindemetall (meist Kobalt Co). Die meisten für Zerspanungswerkzeuge verwendeten Hartmetalle haben eine verschleißresistente Beschichtung, man spricht dann von beschichteten Hartmetallsorten. Des Weiteren gibt es unterschiedliche, spezielle Nachbehandlungsverfahren, beispielsweise für die Spanfläche einer Wendeschneidplatte. “In punkto Hartmetall” kann sowohl vom Substrat einer beschichteten, als auch einer unbeschichteten Sorte die Rede sein.
  • How does ISCAR classify carbide grades?
    The international standard ISO 513 classifies hard cutting material based on their reasonable applicability with respect to the materials. ISCAR adopted this standard and uses the same approach in tool development. Cemented carbides are very hard materials and therefore they can cut most engineering materials, which are softer. Some carbide grades demonstrate better performance than others in cutting tools applied to machining a specific class of materials.
  •   Was bedeuten die Ziffern und Buchstaben der Anwendungsgruppen gemäß ISO 513?
    Die Buchstaben bestimmen die Werkstoffklasse, welche mit dem Werkzeug einer bestimmten Schneidstoffsorte erfolgreich bearbeitet werden kann. Die Klassifizierungsziffern zeigen das Verhältnis von Härte und Zähigkeit an. Je höher die Zahl desto zäher, je niedriger die Zahl desto härter ist die Schneidstoffsorte.
  • Was ist die SUMO TEC-Technologie?
    SUMO TEC ist ein spezielles, durch ISCAR entwickeltes Nachbehandlungsverfahren. Dieses Verfahren macht die beschichtete Oberfläche glatt und einheitlich, was die innere Spannung und Tröpchenbildung in der Beschichtung reduziert. In CVD-Beschichtungen entsteht aufgrund der unterschiedlichen Wärmedehnungskoeffizienten von Substrat und Beschichtungslagen eine starke innere Zugeigenspannung. Auch PVD-Beschichtungen neigen zur Tröpfchenbildung in der Oberfläche. Diese Faktoren wirken sich negativ auf eine Beschichtung aus und verkürzen daher die Standzeit einer Schneidplatte. Der SUMOTEC-Nachbehandlungsprozess verringert bzw. eliminiert diese unerwünschten Effekte mit dem Ergebnis längerer Standzeiten und höherer Produktivität.
  • Warum sind PVD-Nano-Beschichtungen so effizient und progressiv?
    PVD-Beschichtungen wurden in den späten 1980er Jahren entwickelt. Unter Einsatz moderner Nanotechnologie haben PVD-Beschichtungen mittlerweile einen Quantensprung gemacht - komplexe bis dahin bestehende Probleme in diesem Bereich sind gelöst. Weiterentwicklungen in F&E führten zu einer neuen Klasse verschleißresistenter Nanobeschichtungen. Es handelt sich hierbei um Schichtverbunde mit Schichtdicken bis zu 50 nm. Im Vergleich zu herkömmlichen Beschichtungsverfahren resultiert dies in einer deutlich besseren Verschleißfestigkeit.
  • In der Regel werden ISCARs Schneidstoffsorten mit den Buchstaben “IC”bezeichnet   Warum wird DT7150 (DO-TEC) anders bezeichnet?
    In der Beschichtungstechnologie gibt es zwei grundlegende Verfahren - chemische Gasphasenabscheidung (CVD) und physikalische Gasphasenabscheidung (PVD). Durch die technologische Innovation ist es möglich, beide Verfahren für Wendeschneidplattenbeschichtungen anzuwenden, um die Beschichtungseigenschaften zu beeinflussen. ISCARs Schneidstoffsorte DT7150 ist ein hartes Substrat mit einer MT CVD (Medium Temperature CVD) und TiAlN PVD Beschichtung. Diese Schneidstoffsorte wurde ursprünglich zur produktiven Bearbeitung von Spezial-Hartguss entwickelt.
  • Was bedeutet "Einfahren eines Werkzeugs in einer Radiusbewegung"?
    Bei diesem Verfahren fährt ein Werkzeug in einer Radiusbewegung in das Werkstück ein, wodurch die mechanische und thermische Belastung der Schneidkante allmählich zunimmt. Dieser Ansatz trägt wesentlich zur Bearbeitungsstabilität bei und verbessert die Werkzeugstandzeit. Dieses Verfahren entspricht nicht dem herkömmlichen Einfahren, wobei die Belastung der Schneidkante abrupt ansteigt.
  • What are the fundamental differences between these commonly used definitions: "ultra-fine", "submicron" and "fine" carbide grades?
    Each of these definitions relate to the size of the carbide grains in a carbide grade substrate. Sizes may slightly differ for various standards and norms of carbide product manufacturers, but usually they refer to the following:
    1 - 1.4 μm (40 - 55 μin) grain size         fine grade
    0.7 - 0.9 μm (27.5 - 35 μin) grain size   submicron grade
    0.2 - 0.6 μm (8 - 24 μin) grain size        ultra-fine grade

    In addition, depending on the grain size, there are medium, coarse, extra coarse and even nano carbide grades. The last, for example, features extremely small grain sizes: less than 0.2 μm or 8 μin.
  • Which terms are correct: "cemented carbide", "tungsten carbide", "wolfram carbide" or "hard metal"?
    All four terms refer to cemented tungsten carbide. "Tungsten" is another name for the chemical element Wolfram. (Incidentally, the word origin is Swedish, meaning "heavy stone").
    In the field of cutting tool manufacturing, the terms "cemented carbide", "tungsten carbide" and the abbreviation "HM" (hard metal) are usually used.
    Werkstückstoffe
  • Wie klassifiziert ISCAR bei den Schnittwertempfehlungen bei den empfohlenen Schnittparametern?
    ISCAR Werkstoffe entsprechen dem ISO-Standard 513, Zuordnung der Werkstoffe und deren besonders geeignete Schneidstoffe bei geometrisch bestimmter Schneide. Die Bezeichnungen der Hauptgruppen von Werkstoffen, die Haupt- Anwendungen und technische Angaben lehnen sich der VDI 3323 "Anwendungseignung von harten Schneidstoffen" (VDI Verein Deutscher Ingenieure) an.
  • Der ISO-Standard 513 spezifiziert Zerspanungswerkzeuge für die Bearbeitung von rostbeständigem Stahl, da die Werkzeuge zur Gruppe M gehören. Ist das korrekt?
    ISO-Standard 513, Gruppe M (farblich gelb gekennzeichnet) bezieht sich auf Werkzeuge für die Bearbeitung von rostbeständigem, austenitischem und austenitischem-ferritischem Stahl (Duplex). Ferritischer und martenisitischer, rostbeständiger Stahl wird der Gruppe P (farblich blau gekennzeichnet) zugeordnet, und die Startparameter sollten entsprechend programmiert werden.
  • Entspricht die Bearbeitung von Titan der Bearbeitung von austenitischem, rostbeständigem Stahl?
    Handelsübliches Rein-Titan und bei weniger anspruchsvollen Anwendungen können die α- oder α-β- Titanlegierungen ähnlich einem austenitschen, rostbeständigen Stahl bearbeitet werden. Dies gilt nicht für unbehandelte oder vergütete β- Titanlegierungen.
  • Was bedeutet “Beta-Titan”?
    Der Ausdruck “Beta-Titan” wird in der Luft- und Raumfahrtindustrie verwendet. Dieser kann sich auf unterschiedliche Werkstückstoffe beziehen - a β-geglüht α-β-Titanlegierung, oder selten, aβ-Legierung. Deshalb sollte man ihn vor Verwendung exakt spezifizieren, um Missverständnisse zu vermeiden.
  • Warum ist die Zerspanbarkeit von ISO M und S Werkstoffen nahezu gleich?
    Diese Werkstückstoffe sind schwer zerspanbar und weisen hinsichtlich der Zerspanbarkeit die gleichen Eigenschaften auf: geringe Wärmeleitfähigkeit und hohe spezifische Schnittkraft.
  • Gehört Gusseisen zur ISO K-Gruppe?
    Die meisten Gusseisensorten (Grauguss, Kugelgraphitguss, Temperguss) gehören zur Gruppe K. Ausnahmen, bei der Bearbeitung von Hartguss oder Schalenhartguss, bei denen ist die Gruppe H erforderlich. Bainitisches Gusseisen mit Kugelgrahit genannt ADI ( Austempered ductile iron) mit geringer Festigkeit ist die Gruppe P zu wählen. Bainitisches Gusseisen mit Kugelgrahit genannt ADI ( Austempered ductile iron) mit hoher Festigkeit ist die Gruppe H zu wählen.
  • Welcher Stahl ist vorgehärtet und welcher hart?
    Stahlhersteller liefern Stähle in verschiedenen Zuständen: geglüht, vorgehärtet, gehärtet. Der Begriff "vorgehärteter Stahl" bezieht sich auf Stahl, der auf einen nicht allzu hohen Härtegrad gehärtet und vergütet ist - in der Regel unter 45 HRC. "Vorgehärteter" und "gehärteter Stahl" haben beide metallzerspanende Eigenschaften. Abhängig von ihrer Härte kann man Stähle in folgende Gruppen einteilen:
    • Weich (geglüht bis zur Härte HB 250)
    • Vorgehärtet in zwei Härtebereichen:
      - 30-37 HRC
      - 38-44 HRC
    • Gehärtet in drei Härtebereichen:
      - 45-49 HRC
      - 50-55 HRC
      - 56-63 HRC und darüber

    Die Bezeichnung "gehärteter Stahl" bezieht sich in der Regel auf 60 HRC und darüber.
  • What is Ebonite and how to machine this material?
    Ebonite is a hard vulcanized rubber containing a high percentage of sulfur. For the purpose of identifying a suitable tool and appropriate cutting data, Ebonite is characterized by ISCAR material group 30 (ISO N application class). To machine Ebonite effectively, we advise following ISCAR’s recommendations for this group.
  • Are hard metal and heavy metal the same?
    No.
    In metalworking, "hard metal" is a commonly used name for cemented carbide, which is a sintered hard material based on wolfram (tungsten) carbide. Cemented carbide is often referred as simply tungsten carbide. It is the main cutting tool material used today.
    Heavy metals are metals with high atomic weight or density. In the metalworking industry, the term “heavy metal” usually refers to heavy metal alloys, which are sintered composite materials containing 90% or more tungsten.
  • What is the difference between duplex and super duplex stainless steels?
    Duplex stainless steel has a two-phase metallurgical structure: austenitic-ferritic, approximately in equal shares.
    Super duplex stainless steel is a type of duplex stainless steel that contains an increased percentage of chromium and molybdenum for better corrosion resistance.
    From a machinability point of view, these steels are hard-to-cut.
  • Is machining common in manufacturing plastic products? What is the machinability of plastics?
    It is really hard to imagine life today without plastics - organic materials based on synthetic or natural high-molecular compounds (polymers). Plastic products surround us everywhere. Step by step, plastics have replaced traditional materials in many industrial fields, and today plastic is considered one of the most important structural materials. Manufacturing plastic parts is connected mostly with chemical processes; however, for some cases machining is also required. From the point of view of technology, there are three major classes of plastics: thermoplastics, thermosets, and elastomers. According to their use, plastics may be divided into commodity plastics and engineering plastics. Machining is more common for producing parts from engineering plastics, which are represented primarily by thermoplastics. Plastics have very good machinability. In comparison with metals, cutting plastics is performed usually with much higher speeds and feeds, while the applied cutting tools feature significantly less wear. However, selecting appropriate cutting tools is essential to obtain the accuracy required and excellent surface finish.
    Shop Talk (Professional slang)
  • In der Metallzerspanung gibt es wie in vielen anderen industriellen Bereichen eine eigene Terminologie. Deshalb haben wir einen speziellen Bereich, in dem in der Branche gebräuchliche Begriffe erklärt werden.
    Inconel – Als Inconel wird eine Gruppe von über 20 Metalllegierungen bezeichnet, die durch ein spezielles Verfahren hergestellt werden. Durch eine nachfolgende Nummer (z. B. Inconel 625) wird kenntlich gemacht, dass es sich um einen speziellen Werkstückstoff aus einer Familie hoch hitzebeständiger Legierungen auf Nickel-Chrom-Basis handelt. Ohne eine nachfolgende Nummer bezieht sich Inconel meist auf eine ganze Gruppe von Superlegierungen auf Nickelbasis. Nirosta Rostbeständiger Stahl, in der Regel austenitisch Beta-Titan (β) – In den meisten Fällen ist dies eine Beta-geglühte Titanlegierung, obwohl es in einigen Fällen auch eine α-β-Titanlegierung bedeutet. Whisker - Whiskerverstärkte Keramik
    Tool Holding
  • What is a tool holder?
    A tool holder is a device (a tool arrangement) for mounting a cutting tool in a machine tool. One of the tool holder ends carries the cutting tool while the other ends is clamped into the machine tool. Therefore the tool holder acts as an interface between the machine tool and the cutting tool.
  • Are the terms “tool holding” and “tooling” synonymous?
    “Tool holding” is also referred to as “toolholding” and usually relates to tool holding systems that comprise various tool holders, such as arbors, chucks or adaptors, and their accessories (extensions, reducers, rings, sleeves, etc).
    “Tooling” is a much broader definition. “Tooling” can refer to cutting tools together with tool- and work holding arrangements that are intended for a machine tool. “Tooling” relates sometimes to tool management and in certain circumstances it refers to tool holding systems.
  • Does ISCAR supply work holding devices?
    No, ISCAR does not supply work holding devices. ISCAR’s products are cutting tools, tool holding, and tool management systems.
  • Does ISCAR provide tool holders with polygonal taper shank?
    Yes. These tool holders are represented by ISCAR’s CAMFIX family.
  • What are the advantages of thermal (heat) shrink holders?
    The advantages of tool holding, based on clamping tools with cylindrical shanks with the use of heat shrink fitting, are as follows:
    • High accuracy
    • High rigidity
    • Excellent repeatability
    • Reaches deep cavities due to slim holder design
    • Balanced design and assembly’s symmetrical shape eliminate the production of centrifugal forces at high rotational speeds
  • Are ISCAR’s thermal shrink holders suitable for tools with steel shanks?
    Yes. ISCAR’s SRKIN thermal shrink holders are intended for clamping tools with shanks made from cemented carbide, high speed steel (HSS) and steel. The SRKIN product line is fitted DIN69882-8, which is the shrink holder market standard.
    ISCAR also produces SRK slim design shrink holders. SRK holders can be used for steel shanks but we recommend using them for carbide shanks.
  • Does ISCAR produce heating units for mounting cutting tools in thermal shrink holders?
    Yes, ISCAR produces the induction heating unit for thermal shrink tool holding. In addition to this unit, ISCAR provides its simplified, “starter” version, which was designed to help the end-user purchase the shrink holding technology in a low cost device.
  • What are the main design features of X-STREAM SHRINKIN products? In which field would applying these products be the most effective?
    X-STREAM SHRINKIN is a family of thermal shrink chucks with coolant jet channels along the shank bore. The family utilizes a patented design for holding tools with shanks, made from cemented carbide, steel or high-speed steel (HSS). The new chucks combine the advantages of high-precision heat shrink clamping with coolant flow, directed to cutting edges. X-STREAM SHRINKIN has already shown excellent performance in milling aerospace parts, particularly titanium blades and blisks (bladed discs), and especially in high speed milling. In machining deep cavities, the efficient cooling provided by the new chucks substantially improves chip evacuation and diminishes chip re-cutting.
  • What are the SPINJET products and where they are used?
    ISCAR’s SPINJET is a family of coolant-driven compact high speed spindles for small diameter tools. It is a type of “booster” for upgrading existing machines to high speed performers. Depending on pressure and coolant flow rate, the spindles maintain a rotational speed of up to 55000 rpm. The versatile SPINJET products have been successfully integrated in tooling solutions for milling, drilling, thread milling, engraving, chamfering, deburring, and even fine radial grinding. The SPINJET spindles are recommended for tools up to 7 mm (.275 in) in diameter, however the optimal diameter range is 0.5-4 mm (.020-.157 in).
  • Does ISCAR deliver tool holders with identification chips?
    ISCAR’s tool holders with HSK shanks incorporate holes for radio-frequency identification chips (RFID). ISCAR’s CAMFIX tool holders with polygonal taper shank of nominal size C4 (32 as specified by ISO 26623-1) and more are produced with this hole.
    ISCAR can provide RFID chip mounting for all types of tool holder by special request.
    Note: It is essential to adjust the tool holder after mounting an RFID chip.
  • Does ISCAR supply boring heads with digital displays?
    Yes. ISCAR’s ITSBORE family contains adjustable boring heads with digital displays. These heads feature high adjusting accuracy and a simple adjusting process. A clear digital display with a mm/inch value display selection helps to prevent human errors.
  • What is the difference between mandrel and arbor?
    There is no fundamental difference - both terms refer to a bar, usually rotating, that is used for mounting a machined workpiece or a cutting tool.
  • Does ISCAR supply tool holding devices for tapping?
    Yes. Tool holding products for tapping include quick-change ER-type collets, holders with straight shanks and with 7:24 taper shanks, for example:
    • GTI toolholders and straight shanks with floating compression/tension mechanism
    • GTIN compact product line for tappng based on ER collets
    • TCS/TCC quick-change system (part of the ITSBORE modular system)